Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:11:15.580Z Has data issue: false hasContentIssue false

Statistical thermodynamics of temperature anisotropy driven Weibel instabilities

Published online by Cambridge University Press:  13 March 2009

Don S. Lemons
Affiliation:
University of California, Los Alaarios Scientific Laboratory, Los Alanios, New Mexico 87545
D. Winske
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

Abstract

A statistical theory of one- and two-dimensional temperature anisotropy driven Weibel instabilities is proposed. The theory is based on a two-temperature canonical distribution and the mean field approximation. It applies to a nonlinear, periodic, charge-neutralized, and collisionless system. Using a partition function formalism, equations of state are derived which predict upper bounds on the magnetic field energy produced by a quasi-static evolution of these instabilities. Theoretical predictions are in good agreement with results from numerical simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Callen, H. B. 1960 Thermodynamics. Wiley.Google Scholar
Callen, H. 1974 Found. Phys. 4, 423.Google Scholar
Cuperman, S. & Salu, Y. 1973 a Plasma Phys. 15, 107.Google Scholar
Cuperman, S. & Salu, Y. 1973 b J. Plasma Phys. 9, 295.Google Scholar
Davidson, R. C., Haber, I. & Hammer, D. A. 1971 Phys. Lett. 34 A, 235.Google Scholar
Davidson, R. C. & Hammer, D. A. 1971 Phys. Fluids, 14, 1452.CrossRefGoogle Scholar
Davidson, R. C. & Hammer, D. A. 1972 Phys. Fluids, 15, 1282.CrossRefGoogle Scholar
Davidson, R. C., Hammer, D. A., Haber, I. & Wagner, C. E. 1972 Phys. Fluids, 15, 317.Google Scholar
Davidson, R. C. & Tsai, S. T. 1973 J. Plasma Phys. 9, 101.Google Scholar
Fried, B. D. 1959 Phys. Fluids, 2, 337.Google Scholar
Furth, H. P. 1963 Phys. Fluids, 6, 48.Google Scholar
Hamasaki, S. 1968 Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Kalman, G., Montes, C. & Quemada, D. 1968 Phys. Fluids, 11, 1797.Google Scholar
Kubo, R. 1965 Statistical Mechanics. North-Holland.Google Scholar
Lemons, D. S., Winske, D. & Gary, S. P. 1979 J. Plasma Phys.Google Scholar
Montes, C., Coste, J. & Diener, G. 1970 J. Plasma Phys. 4, 21.Google Scholar
Montes, C. & Peyraud, J. 1972 J. Plasma Phys. 7, 67.Google Scholar
Morse, R. L. & Nielson, C. W. 1971 Phys. Fluids, 14, 830.Google Scholar
Ossakow, S. L., Ott, E. & Haber, I. 1972 Phys. Fluids, 15, 2314.Google Scholar
Schrödinger, E. 1952 Statistical Thermodynamics. Cambridge University Press.Google Scholar
Sharer, J. R. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.Google Scholar
Sudan, R. N. 1963 Phys. Fluids, 6, 57.Google Scholar
Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.Google Scholar