Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T04:14:18.403Z Has data issue: false hasContentIssue false

Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle

Published online by Cambridge University Press:  10 September 2014

Giorgio Sonnino*
Affiliation:
Department of Theoretical Physics and Mathematics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 231 - Bvd du Triomphe, 1050 Brussels - Belgium Royal Military School (RMS), Av. de la Renaissance 30, 1000 Brussels, Belgium
Philippe Peeters
Affiliation:
Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 231 - Bvd du Triomphe, 1050 Brussels - Belgium
Alberto Sonnino
Affiliation:
Ecole Polytechnique de Louvain (EPL), Université Catholique de Louvain (UCL), Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgium
Pasquale Nardone
Affiliation:
Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 231 - Bvd du Triomphe, 1050 Brussels - Belgium
György Steinbrecher
Affiliation:
Faculty of Exact Sciences, University of Craiova, Str.A.I.Cuza Street 13, Craiova-200585, Romania
*
Email address for correspondence: [email protected]

Abstract

In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1988a Transport Processes in Plasmas: Classical Transport, Vol. 1. Amsterdam, North-Holland: Elsevier Science Publishers B.V. Google Scholar
Balescu, R. 1988b Transport Processes in Plasmas: Neoclassical Transport, Vol. 2. Amsterdam, North-Holland: Elsevier Science Publishers B.V. Google Scholar
Cardinali, A. et al. 2010 23rd IAEA Fusion Energy Conference.Google Scholar
De Groot, S. R. and Mazur, P. 1984 Non-Equilibrium Thermodynamics, New York: Dover Publications, Inc. Google Scholar
Di Troia, C. 2012 Plasma Phys. Control Fusion 54, 105017.Google Scholar
Mantica, P. et al. 2003 In: Proc. 30th EPS Conference on Controlled Fusion and Plasma Physics, ECA Vol. 27A (European Physical Society, St. Petersburg). pp. 1–119.Google Scholar
Onsager, L. 1931a Phys. Rev. 37, 405.CrossRefGoogle Scholar
Onsager, L. 1931b Phys. Rev. 38, 2265.Google Scholar
Pizzuto, A. et al. 2010 Nucl. Fusion 50, 95005.Google Scholar
Prigogine, I. 1947 Etude Thermodynamique des Phènomènes Irréversibles, Thèse d'Aggrégation de l'Einseignement Supérieur de l'Université Libre de Bruxelles (U.L.B.).Google Scholar
Prigogine, I. 1954 Thermodynamics of Irreversible Processes, John Wiley & Sons.Google Scholar
Shannon, C. E. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27, 379, 423, 623, 656.Google Scholar
Sonnino, G. 2009a Phys. Rev. E 79, 051126.Google Scholar
Sonnino, G. 2009b Phys. Rev. E 79, 051126.CrossRefGoogle Scholar
Sonnino, G. 2011 Eur. Phys. J. E 62, 81.Google Scholar
Sonnino, G. et al. 2013a Phys. Rev. E 87, 014104.CrossRefGoogle Scholar
Sonnino, G. et al. 2013b Phys. Lett. A 377 (43), 3071.Google Scholar
Sonnino, G. et al. 2014 Eur. Phys. J. D 68, 44.Google Scholar
Sonnino, G. and Peeters, P. 2008 Phys. Plasmas 15, 062309/1-062309/23.CrossRefGoogle Scholar
Sonnino, G. and Sonnino, A. (2014) The thermodynamic covariance principle. J. Thermodyn. Catal. 5, 129, doi: 10.4172/2157-7544.1000129.Google Scholar
Sonnino, G. and Steinbrecher, G. 2014 Phys. Rev. E 89, 062106, doi: 10.1103/PhysRevE.89.062106.Google Scholar