Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:46:15.657Z Has data issue: false hasContentIssue false

Stabilization of magnetic curvature-driven Rayleigh–Taylor instabilities

Published online by Cambridge University Press:  01 November 2011

O. G. ONISHCHENKO
Affiliation:
Institute of Physics of the Earth, 10 B. Gruzunskaya Street, 123995 Moscow, Russia ([email protected]) Space Research Institute, 84/32 Profsojuznaya Street, 117997 Moscow, Russia
O. A. POKHOTELOV
Affiliation:
Institute of Physics of the Earth, 10 B. Gruzunskaya Street, 123995 Moscow, Russia ([email protected])
L. STENFLO
Affiliation:
Department of Physics, Linköping University, SE-58183 Linköping, Sweden
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr–Universität Bochum, D–44780 Bochum, Germany

Abstract

The finite ion Larmor radius (FLR) stabilization of the magnetic curvature-driven Rayleigh–Taylor (MCD RT) instability in a low beta plasma with nonzero ion temperature gradient is investigated. Finite electron temperature effects and ion temperature perturbations are incorporated. A new set of nonlinear equations for flute waves with arbitrary wavelengths as compared with the ion Larmor radius in a plasma with curved magnetic field lines is derived. Particular attention is paid to the waves with spatial scales of the order of the ion Larmor radius. In the linear limit, a Fourier transform of these equations yields an improved dispersion relation for flute waves. The dependence of the MCD RT instability growth rate on the equilibrium plasma parameters and the wavelengths is studied. The condition for which the instability cannot be stabilized by the FLR effects is found.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Rosenbluth, M. N., Krall, N. A. and Rostoker, N. 1962 Nucl. Fusion, Suppl. 1, 143.Google Scholar
[2]Roberts, K. V. and Taylor, J. B. 1962 Phys. Rev. Lett. 8, 197.CrossRefGoogle Scholar
[3]Mikhailovskii, A. B. 1967 In: Reviews of Plasma Physics Vol. 3 (ed. Leontovich, M. A.). New York: Plenum, 211 pp.Google Scholar
[4]Ferraro, N. M. and Jardin, S. C. 2006 Phys. Plasmas 13, 092101.Google Scholar
[5]Zhu, P., Schnack, D. D., Ebrahimi, F., Zweibel, E. G., Suzuki, M., Henga, C. C. and Sovinec, C. R. 2008 Phys. Rev. Lett. 101, 085005.Google Scholar
[6]Onishchenko, O. G. 2010 New frontiers in advanced plasma physics. AIP Conf. Proc. 1306, 145.CrossRefGoogle Scholar
[7]Onishchenko, O. G., Pokhotelov, O. A., Stenflo, L. and Shukla, P. K. 2011 Phys. Plasmas 18, 022106.CrossRefGoogle Scholar
[8]Kadomtsev, B. B. 1966 In: Reviews of Plasma Physics, Vol. 2 (ed. Leontovich, M. A.). New York: Consultants Bureau, 153 pp.Google Scholar
[9]Das, A., Sen, A., Mahajan, S. and Kaw, P. 2001 Phys. Plasmas 8, 5104.CrossRefGoogle Scholar
[10]Dastgeer, S., Singh, R., Nordman, H., Weiland, J. and Rogister, A. 2002 Phys. Rev. E 66, 036408.Google Scholar
[11]Sandberg, I. and Shukla, P. K. 2004 Phys. Plasmas 11, 542.Google Scholar
[12]Sandberg, I., Andrushchenko, Zh. N. and Pavlenko, V. P. 2005 Phys. Plasmas 12, 042311.Google Scholar
[13]Sharma, S., Das, A., Kaw, P. and Sen, A. 2007 Physica A 378, 211.Google Scholar
[14]Pokhotelov, O. A. and Onishchenko, O. G. 2011 Ann. Geophys. 29, 411.Google Scholar
[15]Kuvshinov, B. N. and Mikhailovskii, A. B. 1996 Plasma Phys. Rep. 22, 529.Google Scholar
[16]Onishchenko, O. G., Pokhotelov, O. A., Pavlenko, V. P., Shukla, P. K., Farid, T., Stenflo, L., Kamenets, F. F. and Bogdanov, A. V. 2001 Phys. Plasmas 8, 59.Google Scholar
[17]Onishchenko, O. G., Krasnoselskikh, V. V. and Pokhotelov, O. A. 2008 Phys. Plasmas 15, 022903.Google Scholar