Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:25:42.487Z Has data issue: false hasContentIssue false

Stabilization of a low-frequency instability in a dipole plasma

Published online by Cambridge University Press:  01 December 2008

D. T. GARNIER
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
A. C. BOXER
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA ([email protected])
J. L. ELLSWORTH
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA ([email protected])
A. K. HANSEN
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
I. KARIM
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA ([email protected])
J. KESNER
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA ([email protected])
M. E. MAUEL
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
E. E. ORTIZ
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
A. ROACH
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA ([email protected])

Abstract

Low-frequency fluctuations are observed in a plasma confined by a strong dipole magnet and containing an energetic high-pressure population of trapped electrons. The quasi-coherent fluctuations have frequencies characteristic of drift frequencies of the lower temperature background plasma and have large toroidal and radial extent. They are excited throughout a wide range of plasma conditions determined by the level of neutral gas pressure. However, for a sufficiently high rate of neutral gas fueling, the plasma density profile flattens and the fluctuations disappear.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Antonsen, T. M. 1978 Phys Rev Lett. 41, 33.Google Scholar
[2]Garnier, D. T., Hansen, A., Mauel, M. E., Ortiz, E. E., Boxer, A. C., Ellsworth, J., Karim, I., Kesner, J., Mahar, S. and Roach, A. 2006 Phys. Plasmas 13, 056111.CrossRefGoogle Scholar
[3]Garnier, D. T. et al. 2006 Fusion Eng. Design 81, 2371.Google Scholar
[4]Ram, A. and Schultz, S. 2000 Phys. Plasmas 7, 4084.CrossRefGoogle Scholar
[5]Ogawa, Y. et al. 2003 J. Plasma Fusion Res. 79, 643.CrossRefGoogle Scholar
[6]Krall, N. A. 1966 Phys. Fluids 9, 820.Google Scholar
[7]Berk, H. L. 1976 Phys. Fluids 19, 1255.Google Scholar
[8]Garnier, D. T., Kesner, J. and Mauel, M. E. 1999 Phys. Plasmas 6, 3431.Google Scholar
[9]Siscoe, G. K. and Summers, D. 1981 J. Geophys, Res. 86, 8471.CrossRefGoogle Scholar
[10]Hill, T. W., Dessler, A. J. and Maher, L. H. 1981 J. Geophys. Res. 86, 9020.Google Scholar
[11]Levitt, B., Maslovsky, D. and Mauel, M. E. 2005 Phys. Rev. Lett. 94, 175002.Google Scholar
[12]Kesner, J. 2000 Phys. Plasmas 7, 3837.Google Scholar
[13]Kesner, J. and Hastie, R. J. 2002 Phys. Plasmas 9, 395.Google Scholar
[14]Simakov, A., Catto, P. J. and Hastie, R. J. 2001 Phys. Plasmas 8, 4414.Google Scholar
[15]Beall, J. M., Kim, Y. C. and Powers, E. J. 1982 J. Appl. Phys. 53, 3933.CrossRefGoogle Scholar
[16]Krasheninnikova, N. and Catto, P. J. 2005 Phys. Plasmas 12, 32101.Google Scholar
[17]Pastukhov, V. P. and Chudin, N. V. 2001 Plasma Phys. Rep. 27, 907.CrossRefGoogle Scholar
[18]Ricci, P., Rogers, B., Dorland, W. and Barnes, M. 2006 Phys. Plasmas 13, 62102.Google Scholar
[19]Simakov, A., Hastie, R. J. and Catto, P. J. 2002 Phys. Plasmas 9, 201.Google Scholar
[20]Ricci, P., Rogers, B. and Dorland, W. 2006 97, 245001.Google Scholar