Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:40:48.006Z Has data issue: false hasContentIssue false

Spontaneous free-electron two-quantum Stark emission in an arbitrary direction from a zero-temperature electron beam

Published online by Cambridge University Press:  13 March 2009

S. H. Kim
Affiliation:
Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, Texas 76019, U.S.A.

Abstract

Emissions from relativistic electrons travelling in periodic electrostatic fields were observed by Smith and Purcell (1953) and Doucas et at. (1992) as extraordinarily (e.g. 1018 times) stronger than any emission that can be conceived with classical electrodynamics under any equivalent condition. The mechanism is identified as the free-electron two-quantum Stark (FETQS) emission generated by the axial uniform motion, which cannot be radiated in the axial direction. From the excellent agreement between the theoretical result for FETQS emission driven by the axial uniform motion, and the experimental observations and many emission phenomena in plasmas, it is concluded that a high-energy electron follows a quantum-mechanically derived formula (without taking the classical limit ←0), although this diverges in the classical limit. From the extraordinarily large FETQS emission due to macroscopic motion, we speculate that even the FETQS emission generated by electron spin can be macroscopically observable. The spin-generated FETQS emission in an arbitrary direction is calculated using relativistic quantum mechanics. It is found that the total power of this emission scales as γ2 times the emission power in the equivalent magnetic wiggler, where γ is the Lorentz factor of the electron, and the emission is practically confined in a cone of angle 1/γ about the axial direction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranger, M. & Mozer, B. 1961 Phys. Rev. 123, 25.CrossRefGoogle Scholar
Derusso, P. M., Roy, R. J. & Close, C. M. 1965 State Variables for Engineers, p. 279. Wiley.Google Scholar
Doucas, G., Mulvey, J. H., Omort, M., Walsh, J. & Kimmitt, M. F. 1992 Phys. Rev. Lett. 69, 1761.CrossRefGoogle Scholar
Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.CrossRefGoogle Scholar
Feynman, R. P. 1962 Quantum Electrodynamics, p. 4. Benjamin.Google Scholar
Fujiyama, H. & Nambu, M. 1984 Phys. Lett. 105 A, 295.CrossRefGoogle Scholar
Ginzburo, V. L. 1947 Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 165.Google Scholar
Hofmann, A. 1978 Nucl. Instrum. Meth. 152, 17.CrossRefGoogle Scholar
Hopf, F. A., Kuper, T. G., Moore, G. T. & Scully, M. O. 1980 Free-Electron Generators of Coherent Radiation (ed. Jacobs, S. F., Pilloff, H. S., Sargent, M., Scully, M. O. & Spitzer, R.), vol. 7, p. 31. Addison-Wesley.Google Scholar
Kim, S. H. 1986 J. Plasma Phys. 36, 1954 [corrigendum 41, 577 (1989)].CrossRefGoogle Scholar
Kim, S. H. 1988 J. Plasma Phys. 39, 229.CrossRefGoogle Scholar
Kim, S. H. 1989 Phys. Lett. 135 A, 39.CrossRefGoogle Scholar
Kim, S. H. 1991 Nuovo Cim. 106 B, 325.CrossRefGoogle Scholar
Kim, S. H. 1991 Nuovo Cim. 106 B, 1311.CrossRefGoogle Scholar
Kim, S. H. 1992 J. Phys. Soc. Japan 61, 131.Google Scholar
Kim, S. H. 1992 J. Plasma Phys. 47, 197.CrossRefGoogle Scholar
Kim, S. H. 1992 J. Plasma Phys. 47, 219.CrossRefGoogle Scholar
Kim, S. H. 1992 J. Plasma Phys. 47, 505.CrossRefGoogle Scholar
Kim, S. H. 1992 Nuovo Cim. 107 B, 605.CrossRefGoogle Scholar
Kim, S. H. 1992 f J. Korean Phys. Soc. 25, 206.Google Scholar
Kim, S. H. 1992 J. Phys. Soc. Japan. 61, 2610.Google Scholar
Kim, S. H. 1992 J. Plasma Phys. 48, 261.CrossRefGoogle Scholar
Kim, S. H. 1993 J. Phys. Soc. Japan. 62 1.CrossRefGoogle Scholar
Kim, S. H. 1993 J. Plasma Phys. 49, 161.CrossRefGoogle Scholar
Kim, S. H., Chen, K. W. & Yang, J. S. 1990 J. Appl. Phys. 68, 4942.CrossRefGoogle Scholar
Kim, S. H. & Chung, H. Y. 1978 J. Appl. Phys. 49, 5081.CrossRefGoogle Scholar
Landeker, K. 1951 Phys. Rev. 86, 852.CrossRefGoogle Scholar
Motz, H. 1951 J. Appl. Phys. 22, 527.CrossRefGoogle Scholar
Motz, H., Thon, W. & Whitehurst, R. N. 1953 J. Appl. Phys. 24, 826.CrossRefGoogle Scholar
Nakazato, T. Oyamada, M., Niimura, N., Urasawa, S., Konno, O., Kagaya, A., Kato, R., Kamiyama, T., Torizuka, Y., Nanba, T., Kondo, Y., Shibata, Y., Ishi, K., Ohsaka, T. & Ikezawa, M. 1989 Phys. Rev. Lett. 63, 1245.CrossRefGoogle Scholar
Nambu, M. 1983 Laser and Particle Beams 1, 427.CrossRefGoogle Scholar
Nambu, M., Sarma, S. N. & Sarma, K. K. 1992 Phys. Rev. A 45, 7456.CrossRefGoogle Scholar
Schiff, L. I. 1968 Quantum Mechanics, p. 475. McGraw-Hill.Google Scholar
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.CrossRefGoogle Scholar