Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T01:00:10.687Z Has data issue: false hasContentIssue false

A spectral approach to ballooning theory. Part 1

Published online by Cambridge University Press:  01 February 1998

A. THYAGARAJA
Affiliation:
UKAEA Fusion, Culham, Abingdon, Oxfordshire, OX14 3DB, UK (UKAEA/Euratom Fusion Association)

Abstract

This paper and a forthcoming one develop the spectral theory of ballooning transformations relevant to tokamak physics from first principles in a rigorous and yet intuitively clear manner. The power of the ballooning representation to throw light on the spectral characteristics of the plasma problems to which it is applicable is emphasized, and examples are given to illustrate the general notions. The ballooning representation is shown to be essentially a method to separate variables and reduce two-dimensional partial differential equations with periodic coefficients to infinite sets of soluble ordinary differential equations. This paper is concerned with an elementary approach to the techniques in the context of nearly exactly soluble problems involving the anisotropic diffusion operator in toroidal geometry. Two different perturbation methods are discussed. Applications to plasma instability problems and the subtleties involving the continuous spectra of ballooning operators will be taken up in Part 2.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)