Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T22:10:54.584Z Has data issue: false hasContentIssue false

Spatio-temporal evolution of thin Alfven resonance layer

Published online by Cambridge University Press:  07 May 2010

I. S. DMITRIENKO*
Affiliation:
Institute of Solar-Terrestrial Physics SB RAS, P/O Box 291, Irkutsk 664033, Russia ([email protected])

Abstract

We describe the spatio-temporal evolution of one-dimensional Alfven resonance disturbance in the presence of various factors of resonance detuning: dispersion and absorption of Alfven disturbance, nonstationarity of large-scale wave generating resonant disturbance. Using analytical solutions to the resonance equation, we determine conditions for forming qualitatively different spatial and temporal structures of resonant Alfven disturbances. We also present analytical descriptions of quasi-stationary and non-stationary spatial structures formed in the resonant layer, and their evolution over time for cases of drivers of different types corresponding to large-scale waves localized in the direction of inhomogeneity and to nonlocalized large-scale waves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovitz, M. J. and Stegan, I. 1970 Handbook of Mathematical Functions. New York, NY: Dover Publishing Co.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. and Stepanov, K. N. 1974 Plasma Electrodynamics. Moscow: Nauka.Google Scholar
Chen, L. and Hasegawa, A. 1974 Plasma heating by spatial resonance of Alfven waves. Phys. Fluids 17, 13991403.CrossRefGoogle Scholar
Dmitrienko, I. S. 1999 Nonlinear non-stationary Alfven resonance. J. Plasma Phys. 62, 145164.CrossRefGoogle Scholar
Einaudy, G. and Mok, J. 1985 Resistive Alfven normal modes in a nonuniform plasma. J. Plasma Phys. 34, 259270.CrossRefGoogle Scholar
Goertz, G. K. and Boswell, R. W. 1979 Magnetosphere-ionosphere coupling. J. Geophys. Res 84 (A12), 72397246.CrossRefGoogle Scholar
Goossens, M., Ruderman, M. S. and Hollweg, J. V. 1995 Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes. Sol. phys. J. 157, 75102.CrossRefGoogle Scholar
Hasegawa, A. and Chen, L. 1976 Kinetic processes in plasma heating by resonant mode conversion of Alfven. Phys. Fluids 19, 19241976.CrossRefGoogle Scholar
Ionson, J. A. 1978 Resonant absorption of Alfvenic surface waves and heating of solar coronal loops. Astrophys. J. 226, 650673.CrossRefGoogle Scholar
Olver, F. W. J. 1974 Asymptotics and Special Functions. New York, NY: Academic Press.Google Scholar
Ruderman, M. S., Tirry, W. and Goossens, M. (1995) Non-stationary resonant Alfven surface waves in one-dimentional magnetic plasmas. J. Plasma Phys. 54, 31293148.CrossRefGoogle Scholar
Southwood, D. G. 1974 Some feature of field line resonances in the magnetosphere. Planet. Space Sci. 22, 483491.CrossRefGoogle Scholar
Stasiewicz, K., Bellan, P., Chaston, C., Kleitzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A. and WaHlund, J-E. 2000 Small-scale Alfvenic structure in the Aurora. Space Sci. Rev. 92, 423533.CrossRefGoogle Scholar
Stefan, J. R. 1970 Alfven wave damping from finite gyroradius coupling to the ion acoustic mode. Phys. Fluids. 13 (A12), 440.CrossRefGoogle Scholar
Swanson, D. J. 1975 Mode conversion of toroidal Alfven waves. Phys. Fluids 18, 12691276.CrossRefGoogle Scholar
Tirry, W. J. and Goossens, M. 1996 Quasi-modes as dissipative magnetohydrodynamic eigenmodes: Results for one-dimensional equilibrium states. Astrophys. J. 471, 501509.CrossRefGoogle Scholar