Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T22:01:36.485Z Has data issue: false hasContentIssue false

Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles

Published online by Cambridge University Press:  16 October 2020

A. Chami
Affiliation:
Aix-Marseille université, CNRS, PIIM, 13397Marseille, France
C. Arnas*
Affiliation:
Aix-Marseille université, CNRS, PIIM, 13397Marseille, France
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and strength have been established. A sharp increase of the plasma potential is found on the edge of the last magnetic arch followed by a decrease towards the anode plate and edges. It is shown that the spatial variation of the plasma potential is at the origin of a potential well that can trap negatively charged nanoparticles.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnas, C., Chami, A., Couedel, L., Acsente, T., Cabie, M. & Neisius, T. 2019 Thermal balance of tungsten monocrystalline nanoparticles in high pressure magnetron discharges. Phys. Plasmas 26, 053706.CrossRefGoogle Scholar
Bernstein, I. B. & Rabinowitz, I. N. 1959 Theory of electrostatic probes in low-density plasma. Phys. Fluids 2, 112121.CrossRefGoogle Scholar
Bogaerts, A., Kolev, I. & Buyle, G. 2008 Modeling of the magnetron discharge. In Reactive Sputter Deposition (ed. Depla, D. & Mahieu, S.). Springer Series in Material Science, vol. 109, pp. 61130.CrossRefGoogle Scholar
Bradley, J. W., Thompson, S. & Aranda Gonzalvo, Y. 2001 Measurements of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds. Plasma Sources Sci. Technol. 10, 490501.CrossRefGoogle Scholar
Caillard, A., Cuynet, S., Lecas, T., Andreazza, P., Mikikian, M., Thomann, A.-L. & Brault, P. 2015 PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes. J. Phys. D: Appl. Phys. 48, 475302.CrossRefGoogle Scholar
Chauduri, R. G. & Paria, S. 2012 Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 23732433.CrossRefGoogle Scholar
Couedel, L., Mikikian, M., Samarian, A. A. & Boufendi, L. 2010 Self-excited void instability during dust particle growth in a dusty plasma. Phys. Plasmas 17, 083705.CrossRefGoogle Scholar
Cuenya, R. C. 2010 Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518, 31273150.CrossRefGoogle Scholar
Depla, D. & Leroy, W. P. 2012 Magnetron sputter deposition as visualized by Monte Carlo modeling. Thin Solid Films 520, 63376354.CrossRefGoogle Scholar
Field, D. J., Dew, S. K. & Burrell, R. E. 2002 Spatial survey of a magnetron plasma sputtering system using a Langmuir probe. J. Vac. Sci. Technol. A 20, 20322041.CrossRefGoogle Scholar
Grieve, K., Mulvaney, P. & Grieser, F. 2000 Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr. Opin. Colloid Interface Sci. 5, 168172.CrossRefGoogle Scholar
Hartmann, H., Popok, V. N., Barke, I., Von Oeynhausen, V. & Meiwes-Broer, K.-H. 2012 Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces. Rev. Sci. Instrum. 83, 073304.CrossRefGoogle ScholarPubMed
Hopwood, J. & Qian, F. 1995 Mechanisms for highly ionized magnetron sputtering. J. Appl. Phys. 78, 758765.CrossRefGoogle Scholar
Kashtanov, P. V., Sirnov, B. M. & Hippler, R. 2007 Magnetron plasma and nanotechnology. Phys.-Uspekhi 50, 455488.CrossRefGoogle Scholar
Kelly, K. L., Coronado, E., Zaho, L. L. & Schatz, G. C. 2003 The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668677.CrossRefGoogle Scholar
Kishor Kumar, K., Couedel, L. & Arnas, C. 2014 Nanoparticles in direct current discharges: growth and electrostatic coupling. J. Plasma Phys. 80, 849853.CrossRefGoogle Scholar
Kolpakova, A., Kudrna, P. & Tichy, M. 2013 Langmuir probe diagnostics of DC cylindrical magnetron. In WDS’ 13 Proceedings of Contributed Papers, Part II, pp. 127–133.Google Scholar
Kondo, S. & Nambu, K. 1999 A self-consistent numerical analysis of a planar DC magnetron discharge by particle -in-cell/Monte Carlo method. J. Phys. D: Appl. Phys. 32, 11421152.CrossRefGoogle Scholar
Koten, M. A., Voeller, S. A., Patterson, M. M. & Shield, J. E. 2016 In situ measurements of plasma properties during gas-condensation of Cu nanoparticles. J. Appl. Phys 119, 114306.CrossRefGoogle Scholar
Kousal, J., Kolpakova, A., Shelemin, A., Kudrna, P., Tichy, M., Kylian, O., Hanus, J., Choukourov, A. & Biederman, H. 2017 Monitoring of conditions inside gas aggregation cluster source during production of Ti/TiOx nanoparticles. Plasma Sources Sci. Technol. 26, 1005003.CrossRefGoogle Scholar
Michau, A., Hassouni, K. & Arnas, C. 2017 Aerosol dynamics in a sputtering discharge. J. Appl. Phys. 121, 163301.CrossRefGoogle Scholar
Ouaras, K., Hassouni, K., Colina Delacqua, L., Lombardi, G., Vrel, D. & Bonin, X. 2015 Tungsten dust nanoparticles generation from blistering bursts under hydrogen environment in microwave ECR discharge. J. Nucl. Mater. 466, 6568.CrossRefGoogle Scholar
Palmero, A., Van Hattum, E. D., Arnoldbik, W. M., Vredenberg, A. M. & Habraken, P.M. 2004 Characterization of the plasma in radio-frequency magnetron sputtering system. J. Appl. Phys. 95, 7611.CrossRefGoogle Scholar
Rojo, M., Glad, X., Margot, J., Dap, S. & Clergeraux, R. 2019 Charging and heating processes of dust particles in an electron cyclotron resonance plasma. Plasma Sources Sci. Technol. 28, 085004.CrossRefGoogle Scholar
Rossnagel, S. M. & Kaufman, H. R. 1986 Langmuir probe characterization of magnetron operation. J. Vac. Sci. Technol. A 4, 18221825.CrossRefGoogle Scholar
Shidoji, E. & Makabe, T. 2003 Magnetron plasma structure with strong magnetic field. Thin Solid Films 442, 27.CrossRefGoogle Scholar
Sigurjonsson, P., Larsson, P., Lundin, D., Helmersson, U. & Gudmundsson, J. T. 2009 Langmuir probe study of the plasma parameters in the HiPIMS discharge. In 52nd Annual Technical Conference Proceedings, Santa Clara, CA, ISSN 0737-5921.Google Scholar
Wei, X., Skomski, R., Balamurugan, B., Sun, Z. G., Ducharma, S. & Sellmyr, D. J. 2009 Magnetism of TiO and TiO2 nanoclusters. J. Appl. Phys. 105, 07C517.CrossRefGoogle Scholar