Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:44:40.088Z Has data issue: false hasContentIssue false

Simulations of ion–dust streaming instability in a highly collisional plasma

Published online by Cambridge University Press:  13 November 2020

K. Quest
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA92093, USA
M. Rosenberg*
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA92093, USA
A. Levine
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA92093, USA
*
Email address for correspondence: [email protected]

Abstract

The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandyopadhyay, P., Prasad, G., Sen, A. & Kaw, P. 2008 Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma. Phys. Rev. Lett. 101, 065006.CrossRefGoogle Scholar
Fortov, V. E., Khrapak, A. G., Khrapak, S. A., Molotkov, V. I., Nefedov, A. P., Petrov, O. F. & Torchinsky, V. M. 2000 Mechanism of dust-acoustic instability in a direct current glow discharge plasma. Phys. Plasmas 7, 13741380.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic Press.Google Scholar
Gillespie, D. T. 1993 Fluctuation and dissipation in Brownian motion. Am. J. Phys. 61, 10771083.CrossRefGoogle Scholar
Havnes, O., Morfill, G. E. & Goertz, C. K. 1984 Plasma potential and grain charges in a dust cloud embedded in a plasma. J. Geophys. Res. 89, 9991003.CrossRefGoogle Scholar
Heinrich, J., Kim, S.-H. & Merlino, R. L. 2009 Laboratory observations of self-excited dust acoustic shocks. Phys. Rev. Lett. 103, 115002.CrossRefGoogle ScholarPubMed
Heinrich, J. R., Kim, S.-H., Meyer, J. K. & Merlino, R. L. 2011 Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth. Phys. Plasmas 18, 113706.CrossRefGoogle Scholar
Hockney, R. & Eastwood, J. W. 1981 Computer Simulations using Particles. McGraw-Hill.Google Scholar
Jaiswal, S., Pustylnik, M. Y., Zhdanov, S., Thomas, H. M., Lipaev, A. M., Usachev, A. D., Molotkov, V. I., Fortov, V. E., Thoma, M. H. & Novitskii, O. V. 2018 Dust density waves in a dc flowing complex plasma with discharge polarity reversal. Phys. Plasmas 25, 083705.CrossRefGoogle Scholar
Joyce, G., Lampe, M. & Ganguli, G. 2002 Instability-triggered phase transition to a dusty plasma condensate. Phys. Rev. Lett. 88, 095006.CrossRefGoogle ScholarPubMed
Khrapak, S. A., Ivlev, A. V. & Morfill, G. E. 2004 Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405.CrossRefGoogle ScholarPubMed
Khrapak, S. A., Ratynskaia, S. V., Zobnin, A. V., Usachev, A. D., Yaroshenko, V. V., Thoma, M. H., Kretschmer, M., Hofner, H., Morfill, G. E., Petrov, O. F., et al. 2005 Particle charge in the bulk of gas discharges. Phys. Rev. E 72, 016406.CrossRefGoogle ScholarPubMed
Kumar, S., Tiwari, S. K. & Das, A. 2017 Observation of the Korteweg-de Vries soliton in molecular dynamics simulations of a dusty plasma medium. Phys. Plasmas 24, 033711.CrossRefGoogle Scholar
Lemons, D. S., Lackman, J., Jones, M. E. & Winske, D. 1995 Noise- induced instability in self-consistent Monte-Carlo calculations. Phys. Rev. E 52, 68556861.CrossRefGoogle ScholarPubMed
Liu, B., Goree, J., Flanagan, T. M., Sen, A., Tiwari, S. K., Ganguli, G. & Crabtree, C. 2018 Experimental observation of cnoidal waveform of nonlinear dust acoustic waves. Phys. Plasmas 25, 113701.CrossRefGoogle Scholar
Merlino, R. L. 2009 Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments. Phys. Plasmas 16, 124501.CrossRefGoogle Scholar
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80, 773786.CrossRefGoogle Scholar
Merlino, R. L., Heinrich, J. R., Hyun, S.-H. & Meyer, J. K. 2012 Nonlinear dust acoustic waves and shocks. Phys. Plasmas 19, 057301.CrossRefGoogle Scholar
Molotkov, V. I., Nefedov, A. P., Torchinskii, V. M., Fortov, V. E. & Khrapak, A. G. 1999 Dust acoustic waves in a dc glow-discharge plasma. J. Expl Theor. Phys. 89, 477480.CrossRefGoogle Scholar
Nishikawa, K. & Wakatani, M. 1990 Plasma Physics: Basic Theory with Fusion Applications. Springer.CrossRefGoogle Scholar
Opher, M., Morales, G. J. & Leboeuf, J. N. 2002 Krook collisional models of the kinetic susceptibility of plasmas. Phys. Rev. E 66, 016407.CrossRefGoogle ScholarPubMed
Oppenheim, A. V., Willsky, A. S. & Nawab, S. H. 1996 Signals and Systems. Pearson.Google Scholar
Piel, A., Klindworth, M., Arp, O., Melzer, A. & Wolter, M. 2006 Obliquely propagating dust-density plasma waves in the presence of an ion beam. Phys. Rev. Lett. 97, 205009.CrossRefGoogle ScholarPubMed
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
Ratynskaia, S., Khrapak, S., Zobnin, A., Thoma, M. H., Kretschmer, M., Usachev, A., Yaroshenko, V., Quinn, R. A., Morfill, G. E., Petrov, O., et al. 2004 Experimental determination of dust-particle charge in a discharge plasma at elevated pressures Phys. Rev. Lett. 93, 085001.CrossRefGoogle Scholar
Rosenberg, M. 1996 Ion-dust streaming instability in processing plasmas. J. Vac. Sci. Technol. A 14, 631633.CrossRefGoogle Scholar
Rosenberg, M. 2002 A note ion ion-dust streaming instability in a collisional dusty plasma. J. Plasma Phys. 67, 235242.CrossRefGoogle Scholar
Rosenberg, M., Quest, K. & Kercher, B. 2018 Simulations of a low frequency beam-cyclotron instability in a dusty plasma. J. Plasma Phys. 84, 905840612.CrossRefGoogle Scholar
Samsonov, D., Ivlev, A. V., Quinn, R. A., Morfill, G. & Zhdanov, S. 2002 Dissipative longitudinal solitons in a two-dimensional strongly coupled complex (dusty) plasma. Phys. Rev. Lett. 88, 095004.CrossRefGoogle Scholar
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Thomas, H. M. & Morfill, G. E. 2007 Highly resolved self-excited density waves in a complex plasma. Phys. Rev. Lett. 99, 095002.CrossRefGoogle Scholar
Sheridan, T. E., Nosenko, V. & Goree, J. 2008 Experimental study of nonlinear solitary waves in a two-dimensional dusty plasma. Phys. Plasmas 15, 073703.CrossRefGoogle Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics Publishing.CrossRefGoogle Scholar
Teng, L.-W., Chang, M.-C., Tseng, Y. P. & I, L. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.CrossRefGoogle ScholarPubMed
Thomas, E. & Merlino, R. L. 2001 Dust particle motion in the vicinity of dust acoustic waves. IEEE Trans. Plasma Sci. 29, 152157.CrossRefGoogle Scholar
Tiwari, S. K., Das, A., Sen, A. & Kaw, P. 2015 Molecular dynamics simulations of soliton-like structures in a dusty plasma medium. Phys. Plasmas 22, 033706.CrossRefGoogle Scholar
Winske, D. 2004 Wave drag due to dust acoustic waves in collisional dusty plasmas. IEEE Trans. Plasma Sci. 32, 663674.CrossRefGoogle Scholar
Winske, D. & Rosenberg, M. 1998 Nonlinear development of the dust acoustic instability in a collisional dusty plasma. IEEE Trans. Plasma Sci. 26, 9299.CrossRefGoogle Scholar
Yadav, L. L., Singh, S. V. & Bharuthram, R. 2009 Dust-acoustic nonlinear periodic waves in a dusty plasma with charge fluctuation. J. Plasma Phys. 75, 697707.CrossRefGoogle Scholar