Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T18:10:49.290Z Has data issue: false hasContentIssue false

Simple model of reduced electric field in ambipolar regime of dc discharge positive column in hydrogen

Published online by Cambridge University Press:  04 February 2015

V. A. Lisovskiy*
Affiliation:
Kharkov National University, 61022, Kharkov, Svobody Sq. 4, Ukraine Scientific Center of Physical Technologies, Kharkov, 61022, Svobody Sq. 6, Ukraine
E. P. Artushenko
Affiliation:
Kharkov National University, 61022, Kharkov, Svobody Sq. 4, Ukraine Scientific Center of Physical Technologies, Kharkov, 61022, Svobody Sq. 6, Ukraine
V. D. Yegorenkov
Affiliation:
Kharkov National University, 61022, Kharkov, Svobody Sq. 4, Ukraine
*
Email address for correspondence: [email protected]

Abstract

We studied the positive column of the dc discharge through analytical modeling. We considered the ambipolar regime when the balance of charged particles is determined only by direct ionization of molecules by electrons and ambipolar escape of them to the discharge chamber walls. The approximation chosen permitted us to solve the balance equation and to obtain simple formulas for the reduced electric field. Our calculation data for the positive column in hydrogen agree well with experimental and theoretical data of other authors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Amin, S. A. J., Lucas, J. and Kucukarpaci, H. N. 1985 The ratio of radial diffusion coefficient to mobility for electrons in hydrogen, nitrogen and carbon monoxide at high E/N. J. Phys. D: Appl. Phys. 18, 2007.Google Scholar
Amemiya, H. 1990 Plasmas with negative ions-probe measurements and charge equilibrium. J. Phys. D: Appl. Phys. 23, 999.CrossRefGoogle Scholar
Amorim, J., Baravia, G. and Ricard, A. 1995 Production of N, H, and NH active species in N2-H2 dc flowing discharges. Plasma Chem. Plasma Process. 15, 721.CrossRefGoogle Scholar
Amorim, J., Loureiro, J., Baravian, G. and Touzeau, M. 1997 Experimental and theoretical study of dissociation in the positive column of a hydrogen glow discharge. J. Appl. Phys. 82, 2795.CrossRefGoogle Scholar
Bacal, M. 2000 Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas. Rev. Sci. Instrum. 71, 3981.CrossRefGoogle Scholar
Bacal, M., Bruneteau, A. M., Graham, W. G., Hamilton, G. W. and Nachman, M. 1981 Pressure and electron temperature dependence of H-density in a hydrogen plasma. J. Appl. Phys. 52, 1247.CrossRefGoogle Scholar
Budtz-Jørgensen, C. V., Kringhøj, P. and Bøttiger, J. 1999 The critical role of hydrogen for physical sputtering with Ar–H2 glow discharges. Surf. Coat. Technol. 116–119, 938.CrossRefGoogle Scholar
Cicala, G., De Tommaso, E., Raino, A. C., Lebedev, Yu. A. and Shakhatov, V. A. 2009 Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation. Plasma Sources Sci. Technol. 18, 025 032.CrossRefGoogle Scholar
Drexel, H., Senn, G., Fiegele, T., Scheier, P., Stamatovic, A., Mason, N. J. and Mark, T. D. 2001 Dissociative electron attachment to hydrogen. J. Phys. B: At. Mol. Opt. Phys. 34, 1415.CrossRefGoogle Scholar
Endo, M. and Walter, R. F. 2007 Gas Lasers. Boca Raton, FL: CRC Press, p. 3.Google Scholar
Golubovskii, Yu. B., Porokhova, I. A., Behnke, J. and Behnke, J. F. 1999 A comparison of kinetic and fluid models of the positive column of discharges in inert gases. J. Phys. D: Appl. Phys. 32, 456.CrossRefGoogle Scholar
Gordiets, B., Ferreira, C. M., Pinheiro, M. J. and Ricard, A. 1998 Self-consistent kinetic model of low-pressure N2–H2 flowing discharges: I. Volume processes. Plasma Sources Sci. Technol. 7, 363.CrossRefGoogle Scholar
Goyette, A. N., Jameson, W. B., Anderson, L. W. and Lawler, J. E. 1996 An experimental comparison of rotational temperature and gas kinetic temperature in a H2 discharge. J. Phys. D: Appl. Phys. 29, 1197.CrossRefGoogle Scholar
Graham, W. G. 1995 The kinetics of negative hydrogen ions in discharges. Plasma Sources Sci. Technol. 4, 281.CrossRefGoogle Scholar
Hassouba, M. A., Al-Naggar, H. I., Al-Naggar, N. M. and Wilke, C. 2006 Time series analysis of ionization waves in dc neon glow discharge. Phys. Plasmas 13, 073 504.CrossRefGoogle Scholar
Kawamura, E. and Ingold, J. H. 2001 Particle in cell simulations of low pressure small radius positive column discharges. J. Phys. D: Appl. Phys. 34, 3150.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Hoboken, New Jersey: Wiley.CrossRefGoogle Scholar
Lisovskiy, V., Booth, J.-P., Landry, K., Douai, D., Cassagne, V. and Yegorenkov, V. 2006 Electron drift velocity in argon, nitrogen, hydrogen, oxygen and ammonia in strong electric fields determined from rf breakdown curves. J. Phys. D: Appl. Phys. 39, 660.CrossRefGoogle Scholar
Lisovskiy, V. and Yegorenkov, V. 2014 In-depth treatment of discharge ignition data during undergraduate laboratory work. Eur. J. Phys. 35, 045 021.CrossRefGoogle Scholar
Lisovskiy, V. A., Koval, V. A., Artushenko, E. P. and Yegorenkov, V. D. 2012 Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory. Eur. J. Phys. 33, 1537.CrossRefGoogle Scholar
Liu, H. and Dandy, D. S. 1995 Diamond Chemical Vapor Seposition: Nucleation and Early Growth Stages. Park Ridge, New Jersey: Noyes Publications, p. 27.Google Scholar
McDaniel, E. W. and Mason, E. A. 1973 The Mobility and Diffusion of Ions in Gases. New York: Wiley.Google Scholar
Naidu, M. S. and Prasad, A. N. 1968 The ratio of diffusion coefficient to mobility for electrons in nitrogen and hydrogen. Br. J. Appl. Phys. 1, 763.Google Scholar
Phelps, A. V. 1990 Cross sections and swarm coefficients for H+, H2+, H3+, H, H2, and H in H2 for Energies from 0.1 eV to 10 keV. J. Phys. Chem. Ref. Data 19, 653.CrossRefGoogle Scholar
Qayyum, A., Ahmad, R., Ghauri, S. A., Waheed, A. and Zakaullah, M. 2006 Hydrogen Balmer-β and Balmer-γ emission profiles in an abnormal glow region of hydrogen plasma. Vacuum 80, 574.CrossRefGoogle Scholar
Raizer, Y. P. 1991 Gas Discharge Physics. Berlin: Springer.CrossRefGoogle Scholar
Rose, D. J. 1956 Townsend ionization coefficient for hydrogen and deuterium. Phys. Rev. 104, 273.CrossRefGoogle Scholar
Roznerski, W. 1978 The ratio of lateral diffusion coefficient to mobility for electrons in hydrogen and nitrogen. J. Phys. D: Appl. Phys. 11, L197.CrossRefGoogle Scholar
Roznerski, W. and Leja, K. 1980 The ratio of lateral diffusion coefficient to mobility for electrons in hydrogen and nitrogen at moderate E/N. J. Phys. D: Appl. Phys. 13, L181.CrossRefGoogle Scholar
Roznerski, W. and Leja, K. 1984 Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N. J. Phys. D: Appl. Phys. 17, 279.CrossRefGoogle Scholar
Schottky, W. 1924a Wandstrome und Theorie der positiven Saule. Phys. Z. 25, 342.Google Scholar
Schottky, W. 1924b Diffusionstheorie der positiven Saule. Phys. Z. 25, 635.Google Scholar
Schottky, W. and Issendorff, J. 1925 Quasineutrale elektrische diffusion im ruhenden und stromenden gas. Z. Phys. 31, 163.CrossRefGoogle Scholar
Townsend, J. S. 1915 Electricity in Gases. Oxford: Clarendon Press.CrossRefGoogle Scholar
Uhrlandt, D. and Winkler, R. 1996 Radially inhomogeneous electron kinetics in the DC column plasma. J. Phys. D: Appl. Phys. 29, 115.CrossRefGoogle Scholar