Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T14:34:27.223Z Has data issue: false hasContentIssue false

Separatrices: The crux of reconnection

Published online by Cambridge University Press:  18 November 2014

Giovanni Lapenta*
Affiliation:
Department Wiskunde, Center for Mathematical Plasma Astrophysics, University of Leuven, KU Leuven, Belgium
Stefano Markidis
Affiliation:
High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm, Sweden
Andrey Divin
Affiliation:
Swedish Institute of Space Physics, Uppsala, Sweden St. Petersburg State University, St. Petersburg, Russia
David Newman
Affiliation:
University of Colorado, Boulder, CO, USA
Martin Goldman
Affiliation:
University of Colorado, Boulder, CO, USA
*
Email address for correspondence: [email protected]

Abstract

Magnetic reconnection is one of the key processes in astrophysical and laboratory plasmas: it is the opposite of a dynamo. Looking at energy, a dynamo transforms kinetic energy in magnetic energy while reconnection takes magnetic energy and returns it to its kinetic form. Most plasma processes at their core involve first storing magnetic energy accumulated over time and then releasing it suddenly. We focus here on this release. A key concept in analysing reconnection is that of the separatrix, a surface (line in 2D) that separates the fresh unperturbed plasma embedded in magnetic field lines not yet reconnected with the hotter exhaust embedded in reconnected field lines. In kinetic physics, the separatrices become a layer where many key processes develop. We present here new results relative to the processes at the separatrices that regulate the plasma flow, the energization of the species, the electromagnetic fields and the instabilities developing at the separatrices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M. and André, M. 2006 Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res.: Space Phys. 111, A12 208.Google Scholar
Angelopoulos, V. et al. 1994 Statistical characteristics of bursty bulk flow events. J. Geophys. Res.: Space Phys. (1978–2012) 99 (A11), 21 25721 280.Google Scholar
Asano, Y. et al. 2008 Electron flat-top distributions around the magnetic reconnection region. J. Geophys. Res.: Space Phys. (1978–2012) 113 (A1).Google Scholar
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G. and Hwang, K.-J. 2011 Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Phys. 7 (4), 360365.CrossRefGoogle Scholar
Birdsall, C. K. and Langdon, A. B. 2004 Plasma Physics Via Computer Simulation, London: Taylor & Francis.Google Scholar
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M. and Zelenyi, L. M. 2012 Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173 (1–4), 49102.Google Scholar
Birn, J. et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 37153720.Google Scholar
Birn, J. and Hesse, M. 2014 Forced reconnection in the near magnetotail: onset and energy conversion in pic and mhd simulations. J. Geophys. Res.: Space Phys. 119 (1), 290309.Google Scholar
Birn, J., Hesse, M., Nakamura, R. and Zaharia, S. 2013 Particle acceleration in dipolarization events. J. Geophys. Res.: Space Phys. 118 (5), 19601971.CrossRefGoogle Scholar
Birn, J. and Priest, E. R. 2007 Reconnection of Magnetic Fields: magnetohydrodynamics and Collisionless Theory and Observations, Cambridge University Press.Google Scholar
Biskamp, D. 2000 Magnetic Reconnection in Plasmas, UK: Cambridge University Press.CrossRefGoogle Scholar
Brackbill, J. U. and Forslund, D. W. 1982 Simulation of low frequency, electromagnetic phenomena in plasmas. J. Comput. Phys. 46, 271.CrossRefGoogle Scholar
Cattell, C. et al. 2005 Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. Space Phys. 110, A01 211.Google Scholar
Chaston, C. C., Johnson, J. R., Wilber, M., Acuna, M., Goldstein, M. L. and Reme, H. 2009 Kinetic Alfvén wave turbulence and transport through a reconnection diffusion region. Phys. Rev. Lett. 102 (1), 015 001.Google Scholar
Chaston, C. C. et al. 2005 Drift-kinetic Alfvén waves observed near a reconnection x line in the earth's magnetopause. Phys. Rev. Lett. 95 (6), 065 002.Google Scholar
Che, H., Drake, J. F. and Swisdak, M. 2011 A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474, 184187.CrossRefGoogle ScholarPubMed
Che, H., Drake, J. F., Swisdak, M. and Yoon, P. H. 2009 Nonlinear development of streaming instabilities in strongly magnetized plasma. Phys. Rev. Lett. 102 (14), 145 004.Google Scholar
Che, H., Drake, J. F., Swisdak, M. and Yoon, P. H. 2010 Electron holes and heating in the reconnection dissipation region. Geophys. Res. Lett. 37, L11 105.Google Scholar
Curtis, S. 1999 The magnetospheric multiscale mission. . . resolving fundamental processes in space plasmas. In The magnetospheric multiscale mission: resolving fundamental processes in space plasmas: report of the NASA Science and Technology Definition Team for the Magnetospheric Multiscale (MMS) Mission/S. Curtis. Greenbelt, Md.: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999. (NASA/TM; 2000-209883), vol. 1.Google Scholar
Daughton, W., Scudder, J. and Karimabadi, H. 2006 Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas (1994-present) 13 (7), 072 101.Google Scholar
Del Sarto, D., Califano, F. and Pegoraro, F. 2003 Secondary instabilities and vortex formation in collisionless-fluid magnetic reconnection. Phys. Rev. Lett. 91 (23), 235 001.CrossRefGoogle ScholarPubMed
Del Sarto, D., Califano, F. and Pegoraro, F. 2006 Electron parallel compressibility in the nonlinear development of two-dimensional collisionless magnetohydrodynamic reconnection. Mod. Phys. Lett. B 20 (16), 931961.Google Scholar
Divin, A., Lapenta, G., Markidis, S., Newman, D. L. and Goldman, M. V. 2012 Numerical simulations of separatrix instabilities in collisionless magnetic reconnection. Phys. Plasmas 19 (4), 042 110.Google Scholar
Divin, A., Markidis, S., Lapenta, G., Semenov, V. S., Erkaev, N. V. and Biernat, H. K. 2010 Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas (1994-present) 17 (12), 122 102.Google Scholar
Drake, J. F., Kleva, R. G. and Mandt, M. E. 1994a Structure of thin current layers: implications for magnetic reconnection. Phys. Rev. Lett. 73 (9), 1251.CrossRefGoogle ScholarPubMed
Drake, J. F., Kleva, R. G. and Mandt, M. E. 1994b Structure of thin current layers: implications for magnetic reconnection. Phys. Rev. Lett. 73, 12511254.Google Scholar
Drake, J. F., Shay, M. A., Thongthai, W. and Swisdak, M. 2005 Production of energetic electrons during magnetic reconnection. Phys. Rev. Lett. 94 (9), 095 001-+.Google Scholar
Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N. and Zeiler, A. 2003 Formation of electron holes and particle energization during magnetic reconnection. Science 299, 873877.Google Scholar
Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N. and Zeiler, A. 2003 Inherently three dimensional magnetic reconnection: a mechanism for bursty bulk flows? Science 299, 873.Google Scholar
Eastwood, J. P., Phan, T. D., Drake, J. F., Shay, M. A., Borg, A. L., Lavraud, B. and Taylor, M. G. G. T 2013 Energy partition in magnetic reconnection in earth's magnetotail. Phys. Rev. Lett. 110 (22), 225 001.Google Scholar
Fujimoto, K. 2006 Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system. Phys. Plasmas (1994-present) 13 (7), 072 904.CrossRefGoogle Scholar
Fujimoto, M., Shinohara, I. and Kojima, H. 2011 Reconnection and waves: a review with a perspective. Space Sci. Rev. 160, 123143.CrossRefGoogle Scholar
Galeev, A. A. and Sagdeev, R. Z. 1984 Current instabilities and anomalous resistivity of plasma. In: Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics, Vol. 1 (ed. Galeev, A. A. and Sudan, R. N.), p. 271.Google Scholar
Goldman, E. E., Newman, D. L. and Lapenta, G. 2014 Collisionless tail reconnection — paradigms and predictions from 2d implicit pic simulations. Space Sci. Rev. Submitted.Google Scholar
Goldman, M. V., Lapenta, G., Newman, D. L., Markidis, S. and Che, H. 2011 Jet deflection by very weak guide fields during magnetic reconnection. Phys. Rev. Lett. 107, 135001. Published 19 September 2011.Google Scholar
Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Markidis, S., Eastwood, J. P. and Ergun, R. 2014 Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection. Phys. Rev. Lett. 112 (14), 145 002.CrossRefGoogle ScholarPubMed
Goldman, M. V., Newman, D. L. and Pritchett, P. 2008 Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field. Geophys. Res. Lett. 35, L22 109.Google Scholar
Grasso, D., Borgogno, D., Pegoraro, F. and Tassi, E. 2009 Coupling between reconnection and Kelvin–Helmholtz instabilities in collisionless plasmas. Nonlinear Process. Geophys. 16 (2), 241249.Google Scholar
Hamrin, M., Marghitu, O., Norqvist, P., Buchert, S., André, M., Klecker, B., Kistler, L. M. and Dandouras, I. 2012 The role of the inner tail to midtail plasma sheet in channeling solar wind power to the ionosphere. J. Geophys. Res.: Space Phys. (1978–2012) 117 (A6).Google Scholar
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento (1955-1965) 23, 115121.CrossRefGoogle Scholar
Hoshino, M., Hiraide, K. and Mukai, T. 2001 Strong electron heating and non-Maxwellian behavior in magnetic reconnection. Earth, Planet. Space 53, 627634.Google Scholar
Huang, F. C., Wei, F. S. and Feng, X. S. 2006 Theoretical and numerical simulation study of the structure of the hall electric field in the vicinity of the magnetic reconnection site. J. Plasma Phys. 72, 110.Google Scholar
Huba, J. D. and Rudakov, L. I. 2002 Three-dimensional Hall magnetic reconnection. Phys. Plasmas 9, 4435.Google Scholar
Kleva, R. G., Drake, J. F. and Waelbroeck, F. L. 1995 Fast reconnection in high temperature plasmas. Phys. Plasmas (1994-present) 2 (1), 2334.Google Scholar
Lapenta, G. 2008 Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100, 235 001.Google Scholar
Lapenta, G. 2012 Particle simulations of space weather. J. Comput. Phys. 231 (3), 795821.Google Scholar
Lapenta, G. and Brackbill, J. U. 2002 Nonlinear evolution of the lower hybrid drift instability: current sheet thinning and kinking. Phys. Plasmas 9 (5), 15441554.Google Scholar
Lapenta, G., Goldman, M., Newman, D. and Markidis, S. 2013a Propagation speed of rotation signals for field lines undergoing magnetic reconnection. Phys. Plasmas 20 (10), http://dx.doi.org/10.1063/1.4825132.Google Scholar
Lapenta, G., Goldman, M., Newman, D., Markidis, S. and Divin, A. 2014 Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnectiona). Phys. Plasmas (1994-present) 21 (5), 055 702.Google Scholar
Lapenta, G. and Lazarian, A. 2012 Achieving fast reconnection in resistive MHD models via turbulent means. Nonlinear Process. Geophys. 19, 251263.Google Scholar
Lapenta, G. and Markidis, S. 2011 Particle acceleration and energy conservation in particle in cell simulations. Phys. Plasmas (1994-present) 18 (7), 072 101.CrossRefGoogle Scholar
Lapenta, G., Markidis, S., Divin, A., Goldman, M. and Newman, D. 2010 Scales of guide field reconnection at the hydrogen mass ratio. Phys. Plasmas 17 (8), 082 106.CrossRefGoogle Scholar
Lapenta, G., Markidis, S., Divin, A., Goldman, M. V. and Newman, D. L. 2011 Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields. Geophys. Res. Lett. 38 (17), http://dx.doi.org/10.1063/1.3602216.Google Scholar
Lapenta, G., Markidis, S., Poedts, S. and Vucinic, D. 2013b Space weather prediction and exascale computing. Comput. Sci. Eng. 15 (5), 6876.Google Scholar
Lau, Y.-T. and Finn, J. M. 1990 Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672691.Google Scholar
Le, A., Egedal, J., Ohia, O., Daughton, W., Karimabadi, H. and Lukin, V. S. 2013 Regimes of the electron diffusion region in magnetic reconnection. Phys. Rev. Lett. 110 (13), 135 004.Google Scholar
Lichtenberg, A. J., Lieberman, M. A. and Cohen, R. H. 1980 Fermi acceleration revisited. Physica D: Nonlinear Phenom. 1 (3), 291305.Google Scholar
Lu, Q., Huang, C., Xie, J., Wang, R., Wu, M., Vaivads, A. and Wang, S. 2010 Features of separatrix regions in magnetic reconnection: comparison of 2-D particle-in-cell simulations and Cluster observations. J. Geophys. Res. Space Phys.) 115, A11 208.Google Scholar
Markidis, S. and Lapenta, G. 2011 The energy conserving particle-in-cell method. J. Comput. Phys. 230 (18), 70377052.Google Scholar
Markidis, S., Lapenta, G., Bettarini, L., Goldman, M., Newman, D. and Andersson, L. 2011 Kinetic simulations of magnetic reconnection in presence of a background o+ population. J. Geophys. Res.: Space Phys. (1978–2012) 116 (A1), DOI: 10.1029/2011JA016429.Google Scholar
Markidis, S., Lapenta, G., Divin, A., Goldman, M., Newman, D. and Andersson, L. 2012 Three dimensional density cavities in guide field collisionless magnetic reconnection. Phys. Plasmas (1994-present) 19 (3), 032 119.Google Scholar
Markidis, S., Lapenta, G. and Rizwan, U. 2010 Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80, 15091519.Google Scholar
McMillan, B. F. and Cairns, I. H. 2007 Parallel and lower hybrid turbulence in low β plasmas driven by strong parallel currents and the resulting parallel electron and perpendicular ion energization. Phys. Plasmas 14 (1), 012 103.CrossRefGoogle Scholar
Moses, R. W., Finn, J. M. and Ling, K. M. 1993 Plasma heating by collisionless magnetic reconnection: analysis and computation. J. Geophys. Res.: Space Phys. (1978–2012) 98 (A3), 40134040.Google Scholar
Pan, Q., Ashour-Abdalla, M., El-Alaoui, M., Walker, R. J. and Goldstein, M. L. 2012 Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts. J. Geophys. Res.: Space Phys. (1978–2012) 117 (A12).Google Scholar
Parker, E. N. 1972 Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499510.Google Scholar
Petschek, H. E. 1964 Magentic field annihilation. In: AAS-NANA Symposium on the physics of solar flares, p. 425.Google Scholar
Phan, T. D. et al. 2001 Evidence for an extended reconnection line at the dayside magnetosphere. Earth, Planet. Space 53, 619625.Google Scholar
Pontin, D. I. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47 (9), 15081522.CrossRefGoogle Scholar
Priest, E. R. and Forbes, T. 1999 Magnetic Reconnection: MHD Theory and Applications, Cambridge.Google Scholar
Pritchett, P. L. 2005 Onset and saturation of guide-field magnetic reconnection. Phys. Plasmas 12 (6), 062 301.Google Scholar
Pritchett, P. L. and Coroniti, F. V. 2004 Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J. Geophys. Res. Space Phys.) 109 (A18), 1220.Google Scholar
Restante, A. L., Markidis, S., Lapenta, G. and Intrator, T. 2013 Geometrical investigation of the kinetic evolution of the magnetic field in a periodic flux rope. Phys. Plasmas (1994-present) 20 (8), 082 501.Google Scholar
Ricci, P., Brackbill, J. U., Daughton, W. and Lapenta, G. 2004 Collisionless magnetic reconnection in the presence of a guide field. Phys. Plasmas 11 (8), 41024114.Google Scholar
Rogers, B. N., Denton, R. E. and Drake, J. F. 2003 Signatures of collisionless magnetic reconnection. J. Geophys. Res.: Space Phys. (1978–2012) 108 (A3), DOI: 10.1029/2002JA009699.Google Scholar
Runov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.-Z., Turner, D. and Plaschke, F. 2013 Electron fluxes and pitch-angle distributions at dipolarization fronts: themis multipoint observations. J. Geophys. Res.: Space Phys. 118 (2), 744755.Google Scholar
Scholer, M., Sidorenko, I., Jaroschek, C. H., Treumann, R. A. and Zeiler, A. 2003 Onset of collisionless magnetic reconnection in thin current sheets: three-dimensional particle simulations. Phys. Plasmas 10, 35213527.Google Scholar
Sharma, A. S. and Curtis, S. A. 2005 Magnetospheric multiscale mission. In: Nonequilibrium Phenomena in Plasmas, Springer, pp. 179195.CrossRefGoogle Scholar
Shay, M. A., Drake, J. F., Eastwood, J. P. and Phan, T. D. 2011 Super-Alfvénic propagation of substorm reconnection signatures and poynting flux. Phys. Rev. Lett. 107 (6), 065 001.Google Scholar
Sitnov, M. I., Swisdak, M. and Divin, A. V. 2009 Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res.: Space Phys. (1978–2012) 114 (A4), DOI: 10.1029/2008JA013980.Google Scholar
Spitzer, L. 1962 Phys. Fully Ionized Gases. New York: Interscience Publ.Google Scholar
Sundkvist, D., Krasnoselskikh, V., Shukla, P. K., Vaivads, A., André, M., Buchert, S. and Rème, H. 2005 In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature Phys. 436, 825828.Google Scholar
Sweet, P. A. 1958 The neutral point theory of solar flares. In: Electromagnetic Phenomena in Cosmical Physics, (ed. Lehnert, B.), IAU Symposium, Vol. 6, p. 123.Google Scholar
Titov, V. S., Forbes, T. G., Priest, E. R., Mikić, Z. and Linker, J. A. 2009 Slip-squashing factors as a measure of three-dimensional magnetic reconnection. Astrophys. J. 693 (1), 1029.CrossRefGoogle Scholar
Uzdensky, D. A. and Kulsrud, R. M. 2006 Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasmas (1994-present) 13 (6), 062 305.Google Scholar
Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M. and Newman, D. 2013 Formation of a transient front structure near reconnection point in 3-d pic simulations. J. Geophys. Res.: Space Phys. 118 (4), 14351449.Google Scholar
Wang, R. et al. 2013a Observation of multiple sub-cavities adjacent to single separatrix. Geophys. Res. Lett. 40 (11), 25112517.Google Scholar
Wang, R. et al. 2013b Observation of electron acceleration in the separatrix region during magnetic reconnnection. AGU Fall Meeting Abstr. p. B2 145.Google Scholar
Wygant, J. R. et al. 2005 Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res.: Space Phys. (1978–2012) 110 (A9), DOI: 10.1029/2004JA010708.Google Scholar
Xu, G. S., Naulin, V., Fundamenski, W., Rasmussen, J. J., Nielsen, A. H. and Wan, B. N. 2010 Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma 17 (2), 022 501.Google Scholar
Zhi-Wei, M. and Shu-Ling, F. 2008 Generation of electric field and net charge in hall reconnection. Chinese Phys. Lett. 25 (8), 2934.Google Scholar
Zhou, M., Pang, Y., Deng, X. H., Yuan, Z. G. and Huang, S. Y. 2011 Density cavity in magnetic reconnection diffusion region in the presence of guide field. J. Geophys. Res. Space Phys.) 116, A06 222.Google Scholar