Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:07:50.016Z Has data issue: false hasContentIssue false

Self-phase modulation in various regimes of intense laser–plasma interactions

Published online by Cambridge University Press:  17 December 2015

Antonio Giulietti*
Affiliation:
Istituto Nazionale di Ottica del CNR, Sezione ‘A. Gozzini’ di Pisa, Italy
Danilo Giulietti
Affiliation:
Istituto Nazionale di Ottica del CNR, Sezione ‘A. Gozzini’ di Pisa, Italy Dipartimento di Fisica dell’Università and INFN, Pisa, Italy
*
Email address for correspondence: [email protected]

Abstract

Creation of plasmas by intense laser pulses and consequent laser–plasma interactions involve highly non-linear processes. In particular, a variation of the refractive index induced by the laser action turns into a self-phase modulation (SPM) of the laser field. This effect, already observed with nanosecond laser pulses, achieves striking evidence with ultra-short pulses whose intensity can produce index changes in a time as short as a single optical cycle. In this condition, spectral modifications of the laser pulse produced by SPM may strongly modify the laser–plasma interaction. At the same time, the spectral analysis of the transmitted and scattered laser radiation gives valuable information on a variety of processes occurring in the plasma. In this paper we simply consider a few results, which can be attributed to SPM, with the aim of comparing nanosecond and sub-picosecond laser interaction regimes at moderate laser intensities.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afshar-rad, T., Coe, S., Giulietti, A., Giulietti, D. & Willi, O. 1991 The effect of self-phase modulation on stimulated Brillouin scattering in filamentary laser plasmas. Europhys. Lett. 15, 745748.Google Scholar
Atzeni, S. & Meyer-Ter-Vehn, J. 2004 The Physics of Inertial Fusion. Oxford Science.CrossRefGoogle Scholar
Biancalana, V., Borghesi, M., Chessa, P., Deha, V., Giulietti, A., Giulietti, D., Gizzi, L. & Willi, O. 1993 Transition to filamentary regime evidenced by second harmonic forward emission. Europhys. Lett. 22, 175178.Google Scholar
Cairns, R. A., Rau, B. & Airila, M. 2000 Enhanced transmission of laser light through thin slabs of overdense plasmas. Phys. Plasmas 7, 37363740.CrossRefGoogle Scholar
Casanova, M., Laval, G., Pellat, R. & Pesme, D. 1985 Self generated loss of coherency in Brillouin scattering and reduction of reflectivity. Phys. Rev. Lett. 54, 22302233.Google Scholar
Coe, S. E., Afshar-rad, T., Desselberger, M., Khattak, F., Willi, O., Giulietti, A., Lin, Z. Q., Yu, W. & Danson, C. 1989 Suppression of instabilities in long-scalelength preformed plasma. Europhys. Lett. 10, 3134.CrossRefGoogle Scholar
Danson, C., Hillier, D., Hopps, N. & Neely, D. 2015 Petawatt class lasers worldwide. High Power Laser Sci. Engng 3, 114.Google Scholar
Gibbon, P. 2005 Short Pulse Laser Interaction with Matter. Imperial College Press.Google Scholar
Giulietti, A. et al. 2006 Pre-pulse effect on intense femtosecond laser pulse propagation in gas. Phys. Plasmas 13, 093103.Google Scholar
Giulietti, A. et al. 2013 Space- and time-resolved observation of extreme laser frequency upshifting during ultrafast-ionization. Phys. Plasmas 20, 082307.Google Scholar
Giulietti, D., Biancalana, V., Borghesi, M., Chessa, P., Giulietti, A. & Schifano, E. 1994 Spectrally modulated second harmonic emission from laser plasma filaments. Opt. Commun. 106, 5257.Google Scholar
Giulietti, D., Gizzi, L. A., Giulietti, A., Macchi, A., Teychenné, D., Chessa, P., Rousse, A., Cheriaux, G., Chambaret, J. P. & Darpentigny, G. 1997 Observation of solid density laminar plasma transparency to intense 30 femtosecond laser pulses. Phys. Rev. Lett. 79, 31943197.Google Scholar
Gizzi, L. A., Cecchetti, C. A., Giulietti, A., Giulietti, D., Koester, P., Labate, L., Levato, T. & Pathak, N. 2011 Thomson scattering imaging from ultrashort ultraintense laser interaction with gas. IEEE Trans. Plasma Sci. 39, 29542955.Google Scholar
Kato, Y. et al. 1984 Random phasing of high-power lasers for uniform acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.Google Scholar
Koga, J. K., Naumova, N., Kando, M., Tsintsadze, L. N., Nakajima, K., Bulanov, S. W., Dewa, H., Kotaki, H. & Tajima, T. 2000 Fixed blueshift of high intensity short pulse lasers propagating in gas chambers. Phys. Plasmas 7, 52235228.Google Scholar
Le Blanc, S. P., Sauerbrey, R., Rae, S. C. & Burnett, K. 1993 Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas. J. Opt. Soc. Amer. B 10, 18011806.Google Scholar
Lehmberg, R. H. & Obenschain, S. P. 1983 Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 2730.Google Scholar
Lindl, J. et al. 2012 Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501.Google Scholar
Moody, J. D. et al. 2014 Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys. 8, 344346.CrossRefGoogle Scholar
Nuter, R., Gremillet, L., Lefebvre, E. & Martin, P. 2011 Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions. Phys. Plasmas 18, 033107.Google Scholar
Shen, Y. R. 1984 The Principles of Non-linear Optics. John Wiley & Sons.Google Scholar
Strickland, D. & Mourou, G. 1985 Compression of amplified chirped optical pulses. Opt. Commun. 56, 219223.Google Scholar
Teychenné, D., Giulietti, A., Giulietti, D. & Gizzi, L. A. 1998 Magnetically induced optical transparency of overdense plasmas due to ultrafast ionisation. Phys. Rev. E 58, R1245R1247.Google Scholar
Thomas, A. G. R., Mangles, S. P. D., Najmudin, Z., Kaluza, M. C., Murphy, C. D. & Krushelnick, K. 2007 Measurements of wave-breaking radiation from a laser-wakefield accelerator. Phys. Rev. Lett. 98, 054802.Google Scholar
Watts, I., Zepf, M., Clark, E. L., Tatarakis, M., Krushelnik, K., Dangor, A. E., Allot, R., Clarke, R. J., Neely, D. & Norreys, P. A. 2002 Measurements of relativistic self-phase-modulation in plasma. Phys. Rev. E 66, 036409.Google Scholar
Willi, O., Basset, D., Giulietti, A. & Karttunen, S. J. 1989 Nonlinear interaction of an intense laser beam with millimeter sized underdense plasmas. Opt. Commun. 70, 487490.Google Scholar
Yablonovich, E. 1974a Self-phase modulation and short-pulse generation from laser-breakdown plasmas. Phys. Rev. A 10, 18881895.Google Scholar
Yablonovich, E. 1974b Self phase modulation of light in a laser breakdown plasma. Phys. Rev. Lett. 32, 11011104.Google Scholar
Yu, W., Sheng, Z. M., Yu, M. Y., Zhang, J., Jiang, Z. M. & Xu, Z. 1999 Model for transmission of ultrastrong laser pulses through thin foil targets. Phys. Rev. E 59, 35833587.Google Scholar