Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T01:50:51.087Z Has data issue: false hasContentIssue false

Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas

Published online by Cambridge University Press:  13 March 2009

E. Infeld
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Cambridge CB3 9EW

Abstract

The Zakharov-Kuznetsov equation describing Korteweg–de Vries waves and solitons in a strong, uniform magnetic field is rederived taking space stretching to be isotropic. This equation is then used to investigate nonlinear waves and solitons for long-wave instabilities. A solid angle of instability develops around the plane perpendicular to the magnetic field. For weakly nonlinear waves this angle is very narrow: widening as the amplitude of the nonlinear wave is increased. The soliton wave is unstable for all directions other than parallel to the field. Previous results of other authors, limited to solitons and perpendicular propagation are recovered. Calculations are illustrated by polar diagrams for the perturbations. Some broader implications are pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldstein, H. 1980 Classical Mechanics. Addison-Wesley.Google Scholar
Infeld, E. 1981 a Acta Phys. Polon. A 60, 623.Google Scholar
Infeld, E. 1981 b Phys. Lett. 86A, 205.CrossRefGoogle Scholar
Infeld, E. 1984 Advances in Nonlinear Waves (ed. Debnath, L.), ch. 1. Pitman.Google Scholar
Infeld, E. & Frycz, P. 1983 Acta Phys. Polon. B 14, 129.Google Scholar
Infeld, E. & Rowlands, G. 1977 Plasma Phys. 19, 343.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1979 Proc. Roy. Soc. A 366, 537.Google Scholar
Infeld, E. & Rowlands, G. 1980 Z. Physik, B 37, 277.CrossRefGoogle Scholar
Infeld, E., Rowlands, G. & Hen, M. 1978 Acta Phys. Polon. A 54, 131.Google Scholar
Kadomtsev, B. B. & Petviashvili, V. I. 1970 Doklady Akad. Nauk. SSSR, 192, 753.Google Scholar
Kako, M. & Rowlands, G. 1976 Plasma Phys. 18, 165.CrossRefGoogle Scholar
Kuznetsov, E. A., Spector, M. D. & Fal'kovich, G. E. 1984 Physica, 10D, 379.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1981 Phys. Rev. Lett. 47, 719.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.CrossRefGoogle Scholar
Lamb, G. L. 1980 Elements of Soliton Theory. Wiley.Google Scholar
Makhankov, V. G., Litvinienko, E. I. & Shvachka, A. B. 1981 Comp. Phys. Comm. 2, 223.CrossRefGoogle Scholar
Murtaza, G. & Salahuddin, M. 1981 Phys. Lett. 86 A, 473.CrossRefGoogle Scholar
Murtaza, G. & Salahuddin, M. 1982 Plasma Phys. 24, 451.CrossRefGoogle Scholar
Nozaki, K. 1981 Phys. Rev. Lett. 46, 184.CrossRefGoogle Scholar
Rowlands, G. 1969 J. Plasma Phys. 3, 567.CrossRefGoogle Scholar
Rowlands, G. 1974 J. Inst. Math. Appls. 13, 367.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Zakharov, V. E. & Kuznetsov, E. A. 1974 Soviet Phys. JETP, 39, 285.Google Scholar
Zakharov, V. E. & Shabat, A. B. 1974 Funk. Analiz, 8, 33.Google Scholar