Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T00:43:09.807Z Has data issue: false hasContentIssue false

Self-excitation in a helical liquid metal flow: the Riga dynamo experiments

Published online by Cambridge University Press:  07 May 2018

A. Gailitis
Affiliation:
Institute of Physics, University of Latvia, LV-2169 Salaspils 1, Riga, Latvia
G. Gerbeth
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01318 Dresden, Germany
Th. Gundrum
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01318 Dresden, Germany
O. Lielausis
Affiliation:
Institute of Physics, University of Latvia, LV-2169 Salaspils 1, Riga, Latvia
G. Lipsbergs
Affiliation:
Institute of Physics, University of Latvia, LV-2169 Salaspils 1, Riga, Latvia
E. Platacis
Affiliation:
Institute of Physics, University of Latvia, LV-2169 Salaspils 1, Riga, Latvia
F. Stefani*
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01318 Dresden, Germany
*
Email address for correspondence: [email protected]

Abstract

The homogeneous dynamo effect is at the root of magnetic field generation in cosmic bodies, including planets, stars and galaxies. While the underlying theory had increasingly flourished since the middle of the 20th century, hydromagnetic dynamos were not realized in the laboratory until 1999. On 11 November 1999, this situation changed with the first observation of a kinematic dynamo in the Riga experiment. Since that time, a series of experimental campaigns has provided a wealth of data on the kinematic and the saturated regime. This paper is intended to give a comprehensive survey about these experiments, to summarize their main results and to compare them with numerical simulations.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berhanu, M. et al. 2007 Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett. 77, 59001.Google Scholar
Busse, F. H., Müller, U., Stieglitz, R. & Tilgner, A. 1996 A two-scale homogeneous dynamo. An extended analytical model and an experimental demonstration under development. Magnetohydrodynamics 32, 235248.Google Scholar
Christen, M., Hänel, H. & Will, G. 1998 Entwicklung der Pumpe für den hydrodynamischen Kreislauf des Rigaer ‘Zylinderexperimentes’. In Beiträge zu Fluidenergiemaschinen 4 (ed. Faragallah, W. H. & Grabow, G.), pp. 111119. Faragallah-Verlag und Bildarchiv, Sulzbach/Ts.Google Scholar
Frick, P., Noskov, V., Denisov, S. & Stepanov, R. 2010 Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium. Phys. Rev. Lett. 105, 184502.Google Scholar
Gailitis, A. 1967 Self-excitation conditions for a laboratory model of a geomagnetic dynamo. Magnetohydrodynamics 3 (3), 2329.Google Scholar
Gailitis, A. 1996 Design of a liquid sodium MHD dynamo experiment. Magnetohydrodynamics 32, 5862.Google Scholar
Gailitis, A. & Freibergs, Ya. 1976 Theory of a helical MHD dynamo. Magnetohydrodynamics 12, 127129.Google Scholar
Gailitis, A. & Freibergs, Ya. 1980 Nonuniform model of a helical dynamo. Magnetohydrodynamics 16, 116121.Google Scholar
Gailitis, A., Gerbeth, G., Gundrum, Th., Lielausis, O., Platacis, E. & Stefani, F. 2008 History and results of the Riga dynamo experiments. C. R. Phys. 9, 721728.Google Scholar
Gailitis, A., Karasev, B. G., Kirillov, I. R., Lielausis, O. A., Luzhanskii, S. M., Ogorodnikov, A. P. & Preslitskii, G. V. 1987 Experiment with a liquid-metal model of an MHD dynamo. Magnetohydrodynamics 23, 349353.Google Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H. et al. 2000 Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 43654368.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Dement’ev, S., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M. & Will, G. 2001a Magnetic field saturation in the Riga dynamo experiment. Phys. Rev. Lett. 86, 30243027.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Dement’ev, S., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M. & Will, G. 2002a Dynamo experiments at the Riga sodium facility. Magnetohydrodynamics 38, 514.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2001b On the results of the Riga dynamo experiments. Magnetohydrodynamics 37, 7179.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2002b Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys. 74, 973990.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2002c On back-reaction effects in the Riga dynamo experiment. Magnetohydrodynamics 38, 1526.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2003 The Riga dynamo experiment. Surv. Geopyhs. 24, 247267.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2004 Riga dynamo experiment and its theoretical background. Phys. Plasmas 11, 28382843.Google Scholar
Gailitis, A. & Lipsbergs, G. 2017 2016 year experiments at Riga dynamo facility. Magnetohydrodynamics 53, 349356.Google Scholar
Gallet, B. et al. 2012 Experimental observation of spatially localized dynamo magnetic fields. Phys. Rev. Lett. 108, 144501.Google Scholar
Kenjereš, S. & Hanjalić, K. 2007 Numerical simulation of a turbulent magnetic dynamo. Phys. Rev. Lett. 98, 104501.Google Scholar
Kenjereš, S., Hanjalić, K., Renaudier, S., Stefani, F., Gerbeth, G. & Gailitis, A. 2006 Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment. Phys. Plasmas 13, 122308.Google Scholar
Mininni, P., Dmitruk, P., Pinton, J.-F., Plihon, N., Verhille, G., Volk, R. & Bourgoin, M. 2014 Long-term memory in experimental and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Phys. Rev. E 89, 063023.Google Scholar
Miralles, S. et al. 2014 Dynamo efficiency controlled by hydrodynamic bistability. Phys. Rev. E 89, 053005.Google Scholar
Müller, U. & Stieglitz, R. 2002 The Karlsruhe dynamo experiment. Nonl. Proc. Geophys. 9, 165170.Google Scholar
Müller, U., Stieglitz, R. & Horanyi, S. 2004 A two-scale hydromagnetic dynamo experiment. J. Fluid Mech. 498, 3171.Google Scholar
Müller, U., Stieglitz, R. & Horanyi, S. 2006 Complementary experiments at the Karlsruhe dynamo test facility. J. Fluid Mech. 552, 419440.Google Scholar
Ponomarenko, Y. B. 1973 On the theory of hydrodynamic dynamo. J. Appl. Mech. Tech. Phys. 14, 775779.Google Scholar
Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M. & Rüdiger, G. 2012 Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501.Google Scholar
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505.Google Scholar
Sisan, D. R., Mujica, N., Tillotson, W. A., Huang, Y. M., Dorland, W., Hassam, A. B., Antonsen, T. M. & Lathrop, D. P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502.Google Scholar
Spence, E. J., Nornberg, M. D., Jacobson, C. M., Kendrick, R. D. & Forest, C. B. 2006 Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055002.Google Scholar
Steenbeck, M., Kirko, I. M., Gailitis, A., Klawina, A. P., Krause, F., Laumanis, I. J. & Lielausis, O. A. 1967 Der experimentelle Nachweis einer elektromtorischen Kraft längs eines äußeren Magnetfeldes, induziert durch die Strömung flüssigen Metalls ( $\unicode[STIX]{x1D6FC}$ -Effekt). Mber. Dt. Ak. Wiss. 9, 714719.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren Lorentz-Feldstärke $\overline{\boldsymbol{v}\times \boldsymbol{b}}$ für ein elektrisch leitendendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung. Z. Naturforsch. 21a, 369376.Google Scholar
Stefani, F., Gailitis, A. & Gerbeth, G. 2008 Magnetohydrodynamic experiments on cosmic magnetic fields. Z. Angew. Math. Mech. 88, 930954.Google Scholar
Stefani, F., Gailitis, A. & Gerbeth, G. 2011 Energy oscillations and a possible route to chaos in a modified Riga dynamo. Astron. Nachr. 332, 410.Google Scholar
Stefani, F., Gerbeth, G. & Gailitis, A. 1999 Velocity profile optimization for the Riga dynamo experiment. In Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows (ed. Alemany, A., Marty, Ph. & Thibault, J. P.), pp. 3144. Kluwer.Google Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J. & Hollerbach, R. 2006 Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502.Google Scholar
Stefani, F., Giesecke, A. & Gerbeth, G. 2009 Numerical simulations of liquid metal experiments on cosmic magnetic fields. Theor. Comput. Fluid Dyn. 23, 405429.Google Scholar
Stefani, F. et al. 2017 Magnetic field dynamos and magnetically triggered flow instabilities. IOP Conf. Ser.: Mater. Sci. Engng 228, 012002.Google Scholar
Stieglitz, R. & Müller, U. 2001 Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561564.Google Scholar
Verhille, G., Plihon, N., Bourgoin, M., Odier, P. & Pinton, J.-F. 2010 Laboratory dynamo experiments. Space Sci. Rev. 152, 543564.Google Scholar