Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:51:42.622Z Has data issue: false hasContentIssue false

Scaling of magnetic dissipation and particle acceleration in ABC fields

Published online by Cambridge University Press:  03 May 2021

Qiang Chen*
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716Warsaw, Poland
Krzysztof Nalewajko
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716Warsaw, Poland
Bhupendra Mishra
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM87545, USA
*
Email address for correspondence: [email protected]

Abstract

Using particle-in-cell numerical simulations with electron–positron pair plasma, we study how the efficiencies of magnetic dissipation and particle acceleration scale with the initial coherence length $\lambda _0$ in relation to the system size $L$ of the two-dimensional ‘Arnold–Beltrami–Childress’ (ABC) magnetic field configurations. Topological constraints on the distribution of magnetic helicity in two-dimensional systems, identified earlier in relativistic force-free simulations, that prevent the high-$(L/\lambda _0)$ configurations from reaching the Taylor state, limit the magnetic dissipation efficiency to about $\epsilon _{\textrm {diss}} \simeq 60\,\%$. We find that the peak growth time scale of the electric energy $\tau _{E,{\textrm {peak}}}$ scales with the characteristic value of initial Alfvén velocity $\beta _{A,{\textrm {ini}}}$ like $\tau _{E,\textrm {peak}} \propto (\lambda _0/L)\beta _{A,{\textrm {ini}}}^{-3}$. The particle energy change is decomposed into non-thermal and thermal parts, with non-thermal energy gain dominant only for high initial magnetisation. The most robust description of the non-thermal high-energy part of the particle distribution is that the power-law index is a linear function of the initial magnetic energy fraction.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., et al. 2011 a Gamma-ray flares from the Crab Nebula. Science 331 (6018), 739742.CrossRefGoogle ScholarPubMed
Abdo, A. A., Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bellazzini, R., Berenji, B., et al. 2011 b Fermi gamma-ray space telescope observations of the gamma-ray outburst from 3C454.3 in November 2010. Astrophys. J. 733 (2), L26.CrossRefGoogle Scholar
Ackermann, M., Anantua, R., Asano, K., Baldini, L., Barbiellini, G., Bastieri, D., Becerra Gonzalez, J., Bellazzini, R., Bissaldi, E., et al. 2016 Minute-timescale ${>}100\ \textrm {MeV}$ $\gamma$-ray variability during the giant outburst of quasar 3C 279 observed by Fermi-LAT in 2015 June. Astrophys. J. 824 (2), L20.CrossRefGoogle Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., Behera, B., Beilicke, M., Benbow, W., Berge, D., Bernlöhr, K., Boisson, C., Bolz, O., et al. 2007 An exceptional very high energy gamma-ray flare of PKS 2155-304. Astrophys. J. 664 (2), L71L74.CrossRefGoogle Scholar
Albert, J., Aliu, E., Anderhub, H., Antoranz, P., Armada, A., Baixeras, C., Barrio, J. A., Bartko, H., Bastieri, D., Becker, J. K., et al. 2007 Variable very high energy gamma-ray emission from Markarian 501. Astrophys. J. 669 (2), 862883.CrossRefGoogle Scholar
Aleksić, J., Antonelli, L. A., Antoranz, P., Backes, M., Barrio, J. A., Bastieri, D., Becerra González, J., Bednarek, W., Berdyugin, A., Berger, K., et al. 2011 Magic discovery of very high energy emission from the FSRQ PKS $1222+21$. Astrophys. J. 730 (1), L8.CrossRefGoogle Scholar
Arnold, V. 1965 Sur une proprietes topologique des applications globalment canonique de la mechanique classique. C. R. Acad. Sci. Paris 261, 37193722.Google Scholar
Arons, J. 2012 Pulsar wind nebulae as cosmic pevatrons: a current sheet's tale. Space Sci. Rev. 173 (1–4), 341367.CrossRefGoogle Scholar
Bessho, N. & Bhattacharjee, A. 2012 Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys. J. 750 (2), 129.CrossRefGoogle Scholar
Blandford, R., Yuan, Y., Hoshino, M. & Sironi, L. 2017 Magnetoluminescence. Space Sci. Rev. 207 (1–4), 291317.CrossRefGoogle Scholar
Buehler, R., Scargle, J. D., Blandford, R. D., Baldini, L., Baring, M. G., Belfiore, A., Charles, E., Chiang, J., D'Ammando, F., Dermer, C. D., et al. 2012 Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys. J. 749 (1), 26.CrossRefGoogle Scholar
Buehler, R. & Blandford, R. 2014 The surprising Crab pulsar and its Nebula: a review. Rep. Prog. Phys. 77 (6), 066901.CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2012 Beaming and rapid variability of high-energy radiation from relativistic pair plasma reconnection. Astrophys. J. 754 (2), L33.CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2013 Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770 (2), 147.CrossRefGoogle Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys. J. 782 (2), 104.CrossRefGoogle Scholar
Christie, I. M., Petropoulou, M., Sironi, L. & Giannios, D. 2018 Radiative signatures of plasmoid-dominated reconnection in blazar jets. Mon. Not. R. Astron. Soc. 482 (1), 6582.CrossRefGoogle Scholar
Clausen-Brown, E. & Lyutikov, M. 2012 Crab Nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426 (2), 13741384.CrossRefGoogle Scholar
Comisso, L. & Sironi, L. 2018 Particle acceleration in relativistic plasma turbulence. Phys. Rev. Lett. 121, 255101.CrossRefGoogle ScholarPubMed
Comisso, L. & Sironi, L. 2019 The interplay of magnetically dominated turbulence and magnetic reconnection in producing nonthermal particles. Astrophys. J. 886 (2), 122.CrossRefGoogle Scholar
Comisso, L., Sobacchi, E. & Sironi, L. 2020 Hard synchrotron spectra from magnetically dominated plasma turbulence. Astrophys. J. 895 (2), L40.CrossRefGoogle Scholar
East, W. E., Zrake, J., Yuan, Y. & Blandford, R. D. 2015 Spontaneous decay of periodic magnetostatic equilibria. Phys. Rev. Lett. 115, 095002.CrossRefGoogle ScholarPubMed
Giannios, D. 2013 Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 431 (1), 355363.CrossRefGoogle Scholar
Giannios, D., Uzdensky, D. A. & Begelman, M. C. 2009 Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 395 (1), L29L33.Google Scholar
Guo, F., Li, H., Daughton, W. & Liu, Y.-H. 2014 Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005.CrossRefGoogle ScholarPubMed
Guo, F., Li, X., Daughton, W., Kilian, P., Li, H., Liu, Y.-H., Yan, W. & Ma, D. 2019 Determining the dominant acceleration mechanism during relativistic magnetic reconnection in large-scale systems. Astrophys. J. 879 (2), L23.CrossRefGoogle Scholar
Guo, F., Li, X., Daughton, W., Li, H., Kilian, P., Liu, Y.-H., Zhang, Q. & Zhang, H. 2020 Magnetic energy release, plasma dynamics and particle acceleration during relativistic turbulent magnetic reconnection. arXiv:2008.02743.Google Scholar
Guo, F., Li, X., Li, H., Daughton, W., Zhang, B., Lloyd-Ronning, N., Liu, Y.-H., Zhang, H. & Deng, W. 2016 Efficient production of high-energy nonthermal particles during magnetic reconnection in a magnetically dominated ion–electron plasma. Astrophys. J. 818 (1), L9.CrossRefGoogle Scholar
Guo, F., Liu, Y.-H., Daughton, W. & Li, H. 2015 Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806 (2), 167.CrossRefGoogle Scholar
Hoshino, M. 2012 Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett. 108, 135003.CrossRefGoogle ScholarPubMed
Jaroschek, C. H., Treumann, R. A., Lesch, H. & Scholer, M. 2004 Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11 (3), 11511163.CrossRefGoogle Scholar
Kagan, D., Milosavljević, M. & Spitkovsky, A. 2013 A flux rope network and particle acceleration in three-dimensional relativistic magnetic reconnection. Astrophys. J. 774 (1), 41.Google Scholar
Kagan, D., Nakar, E. & Piran, T. 2016 Beaming of particles and synchrotron radiation in relativistic magnetic reconnection. Astrophys. J. 826 (2), 221.CrossRefGoogle Scholar
Kagan, D., Nakar, E. & Piran, T. 2018 Physics of the saturation of particle acceleration in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 476 (3), 39023912.CrossRefGoogle Scholar
Kirk, J.G. & Skjaraasen, O. 2003 Dissipation in poynting-flux–dominated flows: the sigma-problem of the Crab pulsar wind. Astrophys. J. 591 (1), 366379.CrossRefGoogle Scholar
Komissarov, S. S. 2012 Magnetic dissipation in the Crab Nebula. Mon. Not. R. Astron. Soc. 428 (3), 24592466.CrossRefGoogle Scholar
Komissarov, S. S. & Lyutikov, M. 2011 On the origin of variable gamma-ray emission from the Crab Nebula. Mon. Not. R. Astron. Soc. 414 (3), 20172028.CrossRefGoogle Scholar
Liu, W., Li, H., Yin, L., Albright, B. J., Bowers, K. J. & Liang, E. P. 2011 Particle energization in 3D magnetic reconnection of relativistic pair plasmas. Phys. Plasmas 18 (5), 052105.CrossRefGoogle Scholar
Lyubarsky, Y. & Liverts, M. 2008 Particle acceleration in the driven relativistic reconnection. Astrophys. J. 682 (2), 14361442.CrossRefGoogle Scholar
Lyubarsky, Y. E. 2012 Highly magnetized region in pulsar wind nebulae and origin of the Crab gamma-ray flares. Mon. Not. R. Astron. Soc. 427 (2), 14971502.CrossRefGoogle Scholar
Lyutikov, M., Komissarov, S., Sironi, L. & Porth, O. 2018 Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares. J. Plasma Phys. 84 (2), 635840201.CrossRefGoogle Scholar
Lyutikov, M., Sironi, L., Komissarov, S. S. & Porth, O. 2017 a Explosive x-point collapse in relativistic magnetically dominated plasma. J. Plasma Phys. 83 (6), 635830601.CrossRefGoogle Scholar
Lyutikov, M., Sironi, L., Komissarov, S. S. & Porth, O. 2017 b Particle acceleration in relativistic magnetic flux-merging events. J. Plasma Phys. 83 (6), 635830602.CrossRefGoogle Scholar
Mayer, M., Buehler, R., Hays, E., Cheung, C. C., Dutka, M. S., Grove, J. E., Kerr, M. & Ojha, R. 2013 Rapid gamma-ray flux variability during the 2013 March Crab Nebula flare. Astrophys. J. 775 (2), L37.CrossRefGoogle Scholar
Mehlhaff, J. M., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2020 Kinetic beaming in radiative relativistic magnetic reconnection: a mechanism for rapid gamma-ray flares in jets. Mon. Not. R. Astron. Soc. 498 (1), 799820.CrossRefGoogle Scholar
Melzani, M., Walder, R., Folini, D., Winisdoerffer, C. & Favre, J. M. 2014 The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron. Astrophys. 570, A112.CrossRefGoogle Scholar
Nalewajko, K. 2013 The brightest gamma-ray flares of blazars. Mon. Not. R. Astron. Soc. 430 (2), 13241333.CrossRefGoogle Scholar
Nalewajko, K. 2018 a Relativistic magnetic reconnection in application to gamma-ray astrophysics. In XXXVIII Polish Astronomical Society Meeting (ed. A. Rozanska), vol. 7, pp. 310–315. Polskie Towarzystwo Astronomiczne. arXiv:1808.00478.Google Scholar
Nalewajko, K. 2018 b Three-dimensional kinetic simulations of relativistic magnetostatic equilibria. Mon. Not. R. Astron. Soc. 481, 43424354.CrossRefGoogle Scholar
Nalewajko, K., Begelman, M. C., Cerutti, B., Uzdensky, D. A. & Sikora, M. 2012 Energetic constraints on a rapid gamma-ray flare in PKS $1222+216$. Mon. Not. R. Astron. Soc. 425 (4), 25192529.CrossRefGoogle Scholar
Nalewajko, K., Giannios, D., Begelman, M. C., Uzdensky, D. A. & Sikora, M. 2011 Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 413 (1), 333346.CrossRefGoogle Scholar
Nalewajko, K., Yuan, Y. & Chruślińska, M. 2018 Kinetic simulations of relativistic magnetic reconnection with synchrotron and inverse Compton cooling. J. Plasma Phys. 84 (3), 037501.CrossRefGoogle Scholar
Nalewajko, K., Zrake, J., Yuan, Y., East, W. E. & Blandford, R. D. 2016 Kinetic simulations of the lowest-order unstable mode of relativistic magnetostatic equilibria. Astrophys. J. 826 (2), 115.CrossRefGoogle Scholar
Ortuño-Macías, J. & Nalewajko, K. 2020 Radiative kinetic simulations of steady-state relativistic plasmoid magnetic reconnection. Mon. Not. R. Astron. Soc. 497 (2), 13651381.CrossRefGoogle Scholar
Petropoulou, M., Giannios, D. & Sironi, L. 2016 Blazar flares powered by plasmoids in relativistic reconnection. Mon. Not. R. Astron. Soc. 462 (3), 33253343.CrossRefGoogle Scholar
Petropoulou, M. & Sironi, L. 2018 The steady growth of the high-energy spectral cut-off in relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 481 (4), 56875701.CrossRefGoogle Scholar
Petropoulou, M., Sironi, L., Spitkovsky, A. & Giannios, D. 2019 Relativistic magnetic reconnection in electron–positron–proton plasmas: implications for jets of active galactic nuclei. Astrophys. J. 880 (1), 37.CrossRefGoogle Scholar
Sironi, L., Petropoulou, M. & Giannios, D. 2015 Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 450 (1), 183191.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2014 Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. 783 (1), L21.CrossRefGoogle Scholar
Striani, E., Tavani, M., Vittorini, V., Donnarumma, I., Giuliani, A., Pucella, G., Argan, A., Bulgarelli, A., Colafrancesco, S., Cardillo, M., et al. 2013 Variable gamma-ray emission from the Crab Nebula: short flares and long ‘waves’. Astrophys. J. 765 (1), 52.CrossRefGoogle Scholar
Tavani, M., Bulgarelli, A., Vittorini, V., Pellizzoni, A., Striani, E., Caraveo, P., Weisskopf, M. C., Tennant, A., Pucella, G., Trois, A., et al. 2011 Discovery of powerful gamma-ray flares from the Crab Nebula. Science 331 (6018), 736739.CrossRefGoogle ScholarPubMed
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Uzdensky, D. A., Cerutti, B. & Begelman, M. C. 2011 Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula. Astrophys. J. 737 (2), L40.CrossRefGoogle Scholar
Werner, G. R. & Uzdensky, D.A. 2017 Nonthermal particle acceleration in 3D relativistic magnetic reconnection in pair plasma. Astrophys. J. 843 (2), L27.CrossRefGoogle Scholar
Werner, G. R., Uzdensky, D. A., Begelman, M. C., Cerutti, B. & Nalewajko, K. 2018 Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection. Mon. Not. R. Astron. Soc. 473, 48404861.CrossRefGoogle Scholar
Werner, G. R., Uzdensky, D. A., Cerutti, B., Nalewajko, K. & Begelman, M. C. 2016 The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. 816 (1), L8.CrossRefGoogle Scholar
Wong, K., Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2020 First-principles demonstration of diffusive-advective particle acceleration in kinetic simulations of relativistic plasma turbulence. Astrophys. J. 893 (1), L7.CrossRefGoogle Scholar
Yuan, Y., Nalewajko, K., Zrake, J., East, W. E. & Blandford, R. D. 2016 Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria. Astrophys. J. 828, 92.CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2001 The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562 (1), L63L66.CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2007 Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670 (1), 702726.CrossRefGoogle Scholar
Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2017 a Numerical investigation of kinetic turbulence in relativistic pair plasmas – I. Turbulence statistics. Mon. Not. R. Astron. Soc. 474 (2), 25142535.CrossRefGoogle Scholar
Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2018 System-size convergence of nonthermal particle acceleration in relativistic plasma turbulence. Astrophys. J. 867 (1), L18.CrossRefGoogle Scholar
Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2019 Electron and ion energization in relativistic plasma turbulence. Phys. Rev. Lett. 122, 055101.CrossRefGoogle ScholarPubMed
Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2020 Kinetic turbulence in shining pair plasma: intermittent beaming and thermalization by radiative cooling. Mon. Not. R. Astron. Soc. 493 (1), 603626.CrossRefGoogle Scholar
Zhdankin, V., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2017 b Kinetic turbulence in relativistic plasma: From thermal bath to nonthermal continuum. Phys. Rev. Lett. 118, 055103.CrossRefGoogle ScholarPubMed
Zrake, J. 2016 Crab flares due to turbulent dissipation of the pulsar striped wind. Astrophys. J. 823 (1), 39.CrossRefGoogle Scholar
Zrake, J. & Arons, J. 2017 Turbulent magnetic relaxation in pulsar wind nebulae. Astrophys. J. 847 (1), 57.CrossRefGoogle Scholar
Zrake, J. & East, W. E. 2016 Freely decaying turbulence in force-free electrodynamics. Astrophys. J. 817 (2), 89.CrossRefGoogle Scholar