No CrossRef data available.
Published online by Cambridge University Press: 13 March 2009
A closed set of guiding centre equations, derived for a rotating plasma in a static magnetic field, is applied to the problem of the stability of a plasma in a sheared field. The rotation is found to have a stabilizing effect in the absence of resistivity.
A pair of coupled, linear differential equations is derived for the rotating plasma in a weakly sheared field. Dispersion relations are obtained by phase integral methods and, in the absence of finite Larmor radius effects and rotation, instability growth rates proportional to η½13 are found which become proportional to when either is included. The inclusion of both finite Larmor radius and rotation gives growing instabilities proportional to η which are stabilized by the rotation when the finite Larmor radius terms predominate.