Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T01:05:33.887Z Has data issue: false hasContentIssue false

Relaxed states in electron-depleted electronegative dusty plasmas with two-negative ion species

Published online by Cambridge University Press:  13 December 2013

M. Iqbal*
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
*
Email address for correspondence: [email protected]

Abstract

The relaxation of an electron-depleted electronegative dusty plasma with two-negative ions is investigated. When the ratio of canonical vorticities to corresponding flows of all the plasma species is the same and all inertial and non-inertial forces are present, the relaxed state appears as a double Beltrami magnetic field which is the superposition of two force-free relaxed states. The numerical results show that highly diamagnetic relaxed magnetic fields can be obtained by controlling the flow and vorticities through a single Beltrami parameter. The study is useful to investigate the creation of diamagnetic plasma configurations which are considered to be very important in the context of nuclear fusion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avinash, K. and Taylor, J. B. 1991 Comments Plasma Phys. Control. Fusion 14, 127.Google Scholar
Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Phys. Lett. A 315, 120.Google Scholar
Chandrasekhar, S. and Kendall, P. C. 1957 Astrophys. J. 126, 457.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. and Sittler, E. C. Jr. 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
El-Tantawy, S. A., El-Bedwehy, N. A. and Moslem, W. M. 2011 Phys. Plasmas 18, 052113.Google Scholar
El-Tantawy, S. A. and Moslem, W. M. 2012 Astrophys. Space Sci. 337, 219.Google Scholar
Ichiki, R., Shindo, M., Yoshimura, S., Watanabe, T. and Kawai, Y. 2001 Phys. Plasmas 8, 4275.Google Scholar
Iqbal, M. 2005 J. Plasma Phys. 71, 335.Google Scholar
Iqbal, M. and Shukla, P. K. 2011 Phys. Lett. A 375, 2725.Google Scholar
Iqbal, M. and Shukla, P. K. 2012 Phys. Plasmas 19, 033517.CrossRefGoogle Scholar
Mahajan, S. M. and Yoshida, Z. 1998 Phys. Rev. Lett. 81, 4863.Google Scholar
Mahajan, S. M. and Yoshida, Z. 2000 Phys. Plasmas 7, 635.Google Scholar
Mamun, A. A. 1999 Astrophys. Space Sci. 260, 507.Google Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.Google Scholar
Ohsaki, S., Shatashvili, N. L., Yoshida, Z. and Mahajan, S. M. 2001 Astrophys. J. 559, L61.Google Scholar
Ortolani, S. and Schnack, D. D. 1993 Magnetohydrodynamics of Plasma Relaxation. Singapore: World Scientific.Google Scholar
Shukla, P. K. 2004 Phys. Plasmas 11, 5354.Google Scholar
Shukla, P. K. 2005 Phys. Lett. A 334, 205.CrossRefGoogle Scholar
Shukla, P. K. and Mahajan, S. M. 2004a Phys. Scr. T113, 151.Google Scholar
Shukla, P. K. and Mahajan, S. M. 2004b Phys. Lett. A 328, 185.Google Scholar
Steinhauer, L. C. and Ishida, A. 1997 Phys. Rev. Lett. 79, 3423.Google Scholar
Sudan, R. N. 1979 Phys. Rev. Lett. 42, 1277.Google Scholar
Taylor, J. B. 1974 Phys. Rev. Lett. 33, 1139; 1986 Rev. Mod. Phys. 58, 741.CrossRefGoogle Scholar
Tribeche, M., Younasi, S. and Zerguini, T. H. 2008 Can. J. Phys. 86, 975.Google Scholar
Vuitton, V., Lavvasb, P., Yelle, R. V., Galand, M., Wellbrock, A., Lewis, G. R., Coates, A. J. and Wahlund, J. E. 2009 Planet. Space Sci. 57, 1558.Google Scholar
Woltjer, L. 1958 Proc. Natl. Acad. Sci. USA 44, 489.CrossRefGoogle Scholar
Yoshida, Z. and Giga, Y. 1990 Math. Z. 204, 235.Google Scholar
Yoshida, Z. and Mahajan, S. M. 2002 Phys. Rev. Lett. 88, 095001.Google Scholar
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. and Shitashvili, N. 2001 Phys. Plasmas 8, 2125.Google Scholar