Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-04T19:54:51.976Z Has data issue: false hasContentIssue false

Relativistic cross-focusing of extraordinary and ordinary modes in a magnetoactive plasma

Published online by Cambridge University Press:  09 August 2013

MEENU ASTHANA VARSHNEY
Affiliation:
Department of Physics, M. B. Khalsa College, Indore 452002, India
SHALINI SHUKLA
Affiliation:
School of Physics, Devi Ahilya University, Indore 452001, India ([email protected])
SONU SEN
Affiliation:
School of Physics, Devi Ahilya University, Indore 452001, India ([email protected]) Department of Engineering Physics, Indore Institute of Science and Technology, Indore 453331, India
DINESH VARSHNEY
Affiliation:
School of Physics, Devi Ahilya University, Indore 452001, India ([email protected])

Abstract

This paper presents the effect of self-focusing on a circularly polarized beam propagating along the static magnetic field when the extraordinary and ordinary modes are present simultaneously for relativistic intensities. The nonlinearity in the dielectric function arises on account of the relativistic variation of mass, which leads to the mutual coupling of the two modes that support the self-focusing of each other. The propagation and focusing of the first mode affects the propagation and focusing of the second mode. The fact that the two modes are laser-intensity dependent leads to cross-focusing. Dynamics of one laser beam affects the dynamics of the second laser beam. When both the beams or modes are strong, the nonlinearities introduced by the relativistic effect in the presence of the magnetic field are additive in nature, such that one beam can undergo oscillatory self-focusing and other beam simultaneously defocusing and vice versa. The dynamical equation governing the cross-focusing has been set up and a numerical solution has been presented for typical relativistic laser–plasma parameters from a slightly underdense to overdense plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmanov, S. A., Sukhorukov, A. P. and Khokhlov, R. V., 1968 Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Askaryan, G. A., Bulanov, S. V., Pegoraro, F., Pukhov, A. M., 1994 Magnetic interaction of self-focusing channels and fluxes of electromagnetic radiation: their coalescence, the accumulation of energy, and the effect of external magnetic fields on them. Soviet Phys. JETP 60, 251.Google Scholar
Asthana, M., 1993 Relativistic self-focusing of laser beams of arbitrary intensity in plasmas. Ind. J. Pure Appl. Phys. 31, 564567.Google Scholar
Asthana, M., Desai, T. and Pant, , 1998 Self generated axial magnetic field in laser produced plasmas. Phys. Scr. T75, 267269.CrossRefGoogle Scholar
Asthana, M., Giulietti, A., Giulietti, D., Gizzi, L. and Sodha, M. S., 2000 Relativistic interaction of rippled laser beams with plasmas. Laser Part. Beams 18, 399403.CrossRefGoogle Scholar
Bakunov, M. I. and Grachev, I. S. 2002 Energetics of electromagnetic wave transformation in a time-varying magnetoplasma medium. Phys. Rev. E 65, 036405 (1–10).CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A. J., Barringer, L., Gaillard, R., Gizzi, L. A., Meyer, C., Willi, O., Pukhov, A. and Meyer-ter-vehn, J., 1997 Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Gorbunov, L. M. and Kirsanov, V. I. 1987 Excitation of plasma waves by an electromagnetic wave packet. Sov. Phys. JETP 66, 290294.Google Scholar
Halverson, W., Loter, N. G., Ma, W. W., Morrison, R. W. and Karmendy, C. V. 1978 CO2 laser irradiation of solid targets in strong magnetic fields. Appl. Phys. Lett. 32, 1012.CrossRefGoogle Scholar
Laham, N. M., Al-akhteeb, A. M., Al Nasser, A. S. and Odeh, I. M. 2000 The two-plasmon decay of an extraordinary electromagnetic wave in a magnetized homogeneous plasma. Phys. Plasmas 7, 39933997.CrossRefGoogle Scholar
Litvak, A. G., 1970 Finite-amplitude wave beams in a magnetoactive plasma. Soviet Phys. JETP 30, 344347.Google Scholar
Najmudin, Z., Tatarakis, M., Pukhov, A., Clark, E. L., Clark, R. J., Dangor, A. E., Faure, J., Malka, V., Neely, D., Santala, M. I. K. and Krushelnick, K. 2001 Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 2150041 (1–4).CrossRefGoogle Scholar
Pukhov, A. and Meyer-Ter-Vehn, J. 1996 Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Rathore, B., Sen, S., Asthana, M. V. and Varshney, D., 2010 Magnetically induced transparency of circularly polarized laser beam in plasmas. J. Phys. Conf. Series 208, 012089.CrossRefGoogle Scholar
Rax, J. M., Robiche, J. and Kostyukov, I. 2000 Relativistic second-harmonic generation and conversion in a weakly magnetized plasma. Phys. Plasmas 7, 10261034.CrossRefGoogle Scholar
Sharma, A., Kourakis, I. and Sodha, M. S. 2008 Propagation regimes for an electromagnetic beam in magnetized plasma. Phys. Plasmas 15, 1031031 (1–7).CrossRefGoogle Scholar
Sharma, A., Prakash, G., Verma, M. P. and Sodha, M. S., 2003 Three regimes of intense laser propagation in plasmas. Phys. Plasmas 10, 40794084.CrossRefGoogle Scholar
Sheng, Z. H. and Meyer-Ter-Vehn, J. 1996 Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E 54, 18331842.Google Scholar
Sinha, S. and Sodha, M. S. 1980 Transverse self-focusing of a Gaussian beam: momentum method. Phys. Rev. A. 21, 633638.Google Scholar
Sodha, M. S., Ghatak, A. K. and Tripathi, V. K. 1976 Self-focusing of laser beams in plasmas and semiconductors. Prog. Optics. 13, 169265.CrossRefGoogle Scholar
Sodha, M. S., Khanna, R. and Tripathi, V. K. 1974 The self-focusing of electromagnetic beams in a strongly ionized magnetoplasma. J. Phys. D Appl. Phys. 7, 21882197.CrossRefGoogle Scholar
Sodha, M. S. and Sharma, A. 2007 Comparison of two approaches to the study of filamentation in plasmas. Phys. Plasmas 14, 0445011 (1–4).CrossRefGoogle Scholar
Sodha, M. S. and Sharma, A., 2008 Self-focusing of electromagnetic beams in the ionosphere considering Earth’s magnetic field. J. Plasma Phys. 74, 473491.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Krall, J. and Joyce, G. 1992 Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.CrossRefGoogle ScholarPubMed
Stamper, J. A., Mclean, E. A. and Ripin, B. H. 1978 Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation. Phys. Rev. Lett. 40, 11771181.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser-electron accelerator. Phys. Rev. Lett. 43, 267–270.Google Scholar
Varshney, M. A., Rathore, B., Sen, S. and Varshney, D. 2009 Propagation modes and regimes of intense laser beam in magnetized plasma. J. Modern Optics 56, 23682376.CrossRefGoogle Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed