Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T18:14:13.049Z Has data issue: false hasContentIssue false

Reflection of ion-acoustic waves from bipolar potential structures

Published online by Cambridge University Press:  13 March 2009

Y. Nakamura
Affiliation:
Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan
Joyanti Chutia
Affiliation:
Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan

Abstract

Reflection of ion-acoustic waves from the ion sheath in front of the separation grid in a double-plasma device has been investigated experimentally. The plasma potential φ of the source plasma was controlled relative to that of the target plasma. When < κΤe, where Τe is the electron temperature, no reflection was observed. The reason for this is that ions are drifting towards the grid with the Bohm velocity, i.e. the ion-acoustic velocity. When > κΤe the reflected wave consists of the ion-acoustic wave and the ion beam mode. The reflection coefficient for the ion-acoustic wave is about unity. This high efficiency is due to reflection of the ions themselves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aksornkitti, S., Hsuan, H. C. S., Lonngren, K. E. & Alexeff, I. 1968 Phys. Fluids, 11. 1838.Google Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. & Wakerling, R. K.). McGraw-Hill.Google Scholar
Buscher, H. T. & Gorman, C. D. 1968 Phys. Lett. 27, 308.CrossRefGoogle Scholar
Dahiya, R. P., John, P. I. & Saxena, Y. C. 1977 Phys. Lett. 65 A, 119.Google Scholar
Grésillon, D. & Doveil, F. 1975 Phys. Rev. Lett. 34, 77.Google Scholar
Ishihara, O., Alexeff, I., Doucet, H. J. & Jones, W. D. 1978 Phys. Fluids, 21, 2211.Google Scholar
Jones, W. D. & Alexeff, I. 1966 Proceedings of the 7th International Conference on Phenomena in Ionized Gases, Beograd, Yugoslavia, vol. II, p. 303.Google Scholar
Lonngren, K. E. 1987 Am. J. Phys. 55, 634.Google Scholar
Nakamura, Y. 1971 J. Phys. Soc. Jpn, 31, 273.Google Scholar
Nakamura, Y. 1985 IEEE Trans. Plasma Sci. 13, 19.Google Scholar
Nakamura, Y. 1987 a Proceedings of the 18th International Conference on Phenomena in Ionized Gases, Swansea, U.K., vol. II, p. 276.Google Scholar
Nakamura, Y. 1987 b J. Plasma Phys. 38, 461.Google Scholar
Nakamura, Y., Nomura, Y. & Itoh, T. 1977 Phys. Rev. Lett. 39. 1622.Google Scholar
Nakamura, Y., Nomura, Y. & Itoh, T. 1980 Proceedings of International Conference on Plasma Physics, vol. I. p. 119. Fusion Association of Japan.Google Scholar
Nakamura, Y. & Chutia, J. 1988 Reports of the Institute of Space and Astronautical Science no. 632, p. 1.Google Scholar
Nishida, Y. 1984 Phys. Fluids, 27, 2176.CrossRefGoogle Scholar
Noda, S., Nakamura, Y., Kawai, Y. & Akazaki, M. 1988 Jap. J. Appl. Phys. 27, 403.CrossRefGoogle Scholar
Oertl, M. & Popa, G. 1988 Plasma Phys. Contr. Fusion, 30, 529.Google Scholar
Popa, G. & Oertl, M. 1983 Phys. Lett. 98A, 110.Google Scholar
Raychaudhuri, S., Trieu, B., Thikis, E. K. & Lonngren, K. E. 1986 IEEE Trans. Plasma Sci. 14, 42.Google Scholar
Schott, L. 1986 Phys. Fluids, 29, 846.CrossRefGoogle Scholar
Stenzel, R. L., Williams, R., Aguero, R., Kitazaki, K., Ling, A., McDonald, T. & Spitzer, J. 1982 Rev. Sci. Instrum. 53, 1027.CrossRefGoogle Scholar
Watanabe, S., Ishihara, O. & Tanaca, H. 1972 J Plasma. Phys. 8, 321.Google Scholar