Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:14:39.366Z Has data issue: false hasContentIssue false

Quasi-parallel propagating solitons in magnetised relativistic electron–positron plasmas

Published online by Cambridge University Press:  23 March 2023

Michael S. Ruderman*
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK Space Research Institute (IKI), Russian Academy of Sciences, Moscow, Russia Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
Nikolai S. Petrukhin
Affiliation:
National Research University – Higher School of Economics, Moscow, Russia
Efim Pelinovsky
Affiliation:
National Research University – Higher School of Economics, Moscow, Russia Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Nizhny Novgorod, Russia
Liliya Y. Kataeva
Affiliation:
Nizhny Novgorod State Technical University n.a. R. Alekseev, Nizhny Novgorod, Russia
*
Email address for correspondence: [email protected]

Abstract

In this article, we study nonlinear waves propagating along the background magnetic field in relativistic electron–positron plasmas. Using the reductive perturbation method, we derive a three-dimensional equation describing these waves. When the perturbations do not vary in the directions orthogonal to the background magnetic field this equation reduces to the vector modified Kortewed–de Vries equation. We present solutions of the obtained equation in the form of planar solitary waves and describe the results of study of their stability with respect to transverse perturbations. We also study numerically non-planar solitary waves.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonian, F.A., Bogovalov, S.V. & Khangulyan, D. 2012 Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar. Nature 482, 507509.CrossRefGoogle ScholarPubMed
Arons, J. & Barnard, J.J. 1986 Wave propagation in pulsar magnetospheres: dispersion relations and normal modes of plasmas in superstrong magnetic fields. Astrophys. J. 302, 120155.CrossRefGoogle Scholar
Begelman, M.C., Blandford, R.D. & Rees, M.J. 1984 Theory of extragalactic radio-sources. Rev. Mod. Phys. 56, 255351.CrossRefGoogle Scholar
Cattaert, T., Kourakis, I. & Shukla, P.K. 2005 Envelope solitons associated with electromagnetic waves in a magnetized pair plasma. Phys. Plasmas 12, 012319.CrossRefGoogle Scholar
Cerutti, B. & Beloborodov, A.M. 2017 Electrodynamics of pulsar magnetospheres. Space Sci. Rev. 207, 111136.CrossRefGoogle Scholar
Chian, A.C.-L. & Kennel, C.F. 1983 Self-modulational formation of pulsar microstructures. Astrophys. Space Sci. 97, 918.CrossRefGoogle Scholar
Destrade, M. & Saccomandi, G. 2008 Nonlinear transverse waves in deformed dispersive solids. Wave Motion 43, 325336.CrossRefGoogle Scholar
El-Labany, S.K., El-Shamy, E.F., Sabry, R. & Khedr, D.M. 2013 The interaction of two nonplanar solitary waves in electron–positron–ion plasmas: an application in active galactic nuclei. Phys. Plasmas 20, 012105.CrossRefGoogle Scholar
Erbay, S. 1999 Coupled modified Kadomtsev–Petviashvili equations in dispersive elastic media. Intl J. Non-Linear Mech. 34, 289297.CrossRefGoogle Scholar
Erbay, S. & Suhubi, E.S. 1989 a Nonlinear-wave propagation in micropolar media. 1. The general- theory. Intl J. Engng Sci. 27, 895914.CrossRefGoogle Scholar
Erbay, S. & Suhubi, E.S. 1989 b Nonlinear-wave propagation in micropolar media. 2. Special cases, solitary waves and Painleve analysis. Intl J. Engng Sci. 27, 915919.CrossRefGoogle Scholar
Fedun, V.M., Ruderman, M.S. & Erdélyi, R. 2008 Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing. Phys. Lett. A 372, 61076110.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Delfin, C., Wahlström, C.G. & Habs, D. 2000 Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 26622664.CrossRefGoogle Scholar
Gailis, R.M., Frankel, N.E. & Dettmann, C.P. 1995 Magnetohydrodynamics in the expanding Universe. Phys. Rev. D 52, 69016917.CrossRefGoogle ScholarPubMed
Gorbacheva, O.B. & Ostrovsky, L.A. 1983 Non-linear vector waves in a mechanical model of a molecular chain. Physica D 8, 223228.CrossRefGoogle Scholar
Ichikawa, Y.-H., Konno, K., Wadati, M. & Sanuki, H. 1980 Spiky soliton in circular polarized Alfvén wave. J. Phys. Soc. Japan 48, 279286.CrossRefGoogle Scholar
Iwamoto, N. 1993 Collective modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 47, 604611.CrossRefGoogle ScholarPubMed
Kadomtsev, B.B. & Petviashvili, V.I. 1970 On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539541. [Translated from Russian: Kadomtsev, B. B. & Petviashvili, V. I. 1970 Ob ustoychivosti uedinyonnyh voln v slabo dispergiruyushchih sredah. Doklady Akademii Nauk SSSR 192, 753–756.]Google Scholar
Kakutani, T., Ono, H., Taniuti, T. & Wei, C.-C. 1968 Reductive perturbation method in nonlinear wave propagation II. Application to hydromagnetic waves in cold plasma. J. Phys. Soc. Japan 24, 11591166.CrossRefGoogle Scholar
Kaup, D.J. & Newell, A.C. 1978 An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798801.CrossRefGoogle Scholar
Kawakatu, N., Kino, M. & Takahara, F. 2016 Evidence for a significant mixture of electron/positron pairs in FRII jets constrained by cocoon dynamics. Mon. Not. R. Astron. Soc. 457, 11241136.CrossRefGoogle Scholar
Kawata, T. & Inoue, H. 1978 Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J. Phys. Soc. Japan 44, 19681976.CrossRefGoogle Scholar
Lakhina, G.S. & Verheest, F. 1997 Alfvénic solitons in ultrarelativistic electron–positron plasmas. Astrophys. Space Sci. 253, 97106.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1966 Course of Theoretical Physics, vol. 6, 3rd edn., Fluid Mechanics. Pergamon Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1975 Course of Theoretical Physics, vol. 2, 4th edn., The Classical Theory of Fields. Butterworth Heinemann.Google Scholar
Liang, E.P., Wilks, S.C. & Tabak, M. 1998 Pair production by ultraintense lasers. Phys. Rev. Lett. 91, 48874890.CrossRefGoogle Scholar
Mikhailovskii, A.B., Onishchenko, O.G. & Smolyakov, A.I. 1985 a Theory of low-frequency electromagnetic solitons in a relativistic electron–positron plasma. Sov. J. Plasma Phys. 11, 215219. [Translated from Russian: Mikhailovskii, A. B., Onishchenko, O. G., and Smolyakov, A. I. 1985a Teoriya nizkochastotnyh elektromagnitnyh solitonov v relativistskoi elektronno-positronnoy plasme. Fizika Plazmy 11, 369-375.]Google Scholar
Mikhailovskii, A.B., Onishchenko, O.G. & Tatarinov, E.G. 1985 b Alfvén solitons in a relativistic electron-position plasma. I. Hydrodynamic theory. Plasma Phys. Control. Fusion 27, 527537.CrossRefGoogle Scholar
Mikhailovskii, A.B., Onishchenko, O.G. & Tatarinov, E.G. 1985 c Alfvén solitons in a relativistic electron-position plasma. II. Kinetic theory. Plasma Phys. Control. Fusion 27, 539556.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, K. & Takeda, S. 1976 a Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Japan 41, 265271.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, K. & Takeda, S. 1976 b Modulational instability and envelope-solutions for nonlinear Alfvén waves propagating along magnetic-field in plasmas. J. Phys. Soc. Japan 41, 667673.CrossRefGoogle Scholar
Mjølhus, E. 1976 On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321334.CrossRefGoogle Scholar
Mjølhus, E. & Hada, T. 1997 In Nonlinear Waves and Chaos in Space Plasmas (ed. T. Hada & H. Matsumoto), p. 121. Terrapub.Google Scholar
Mjølhus, E. & Wyller, J. 1986 Alfvén solitons. Phys. Scr. 33, 442451.CrossRefGoogle Scholar
Rajib, T.I., Sultana, S. & Mamun, A.A. 2015 Solitary waves in rotational pulsar magnetosphere. Astrophys. Space Sci. 357, 52.CrossRefGoogle Scholar
Rogister, A. 1971 Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma. Phys. Fluids 14, 27332739.CrossRefGoogle Scholar
Ruderman, M.S. 1987 Quasilongitudinall propagating solitons in a plasma with Hall dispersion. Fluid Dyn. 22, 299305. [Translated from Russian: Ruderman, M. S. 1987 Ustoichivost’ kvaziprodol'no rasprostranyayushchihsya solitonov v plasme s Hollovskoi dispersiey. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 159-165.]CrossRefGoogle Scholar
Ruderman, M.S. 2002 DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-$\beta$ Hall plasma. J. Plasma Phys. 67, 271276.CrossRefGoogle Scholar
Ruderman, M.S. 2020 Quasi-parallel propagation of solitary waves in magnetised non-relativistic electron–positron plasmas. J. Plasma Phys. 86, 905860311.CrossRefGoogle Scholar
Ruderman, M.A. & Sutherland, P.G. 1975 Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 196, 5172.CrossRefGoogle Scholar
Ruffini, R., Vereshchagin, G & Xue, S.-S. 2010 Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1140.CrossRefGoogle Scholar
Sakai, J. & Kawata, T. 1980 a Waves in an ultra-relativistic electron–positron plasma. J. Phys. Soc. Japan 49, 747752.CrossRefGoogle Scholar
Sakai, J. & Kawata, T. 1980 b Non-linear Alfvén-wave in an ultra-relativistic electron–positron plasma. J. Phys. Soc. Japan 49, 753758.CrossRefGoogle Scholar
Shukla, R.K. 2003 Generation of magnetic fields in the early universe. Phys. Lett. A 310, 182186.CrossRefGoogle Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. 1986 Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Stewart, G.A. & Laing, E.W. 1992 Wave propagation in equal-mass plasmas. J. Plasma Phys. 47, 295319.CrossRefGoogle Scholar
Sturrock, P.A. 1971 A model of pulsars. Astrophys. J. 164, 529556.CrossRefGoogle Scholar
Taniuti, T. & Wei, C.-C. 1968 Reductive perturbation method in nonlinear wave propagation. I. J. Phys. Soc. Japan 24, 941946.CrossRefGoogle Scholar
Tatsuno, T., Berezhiani, V.I., Pekker, M. & Mahajan, S.M. 2003 Angular momenta creation in relativistic electron–positron plasma. Phys. Rev. E 68, 016409.CrossRefGoogle ScholarPubMed
Verheest, F. 1996 Solitary Alfvén modes in relativistic electron–positron plasmas. Phys. Lett. A 213, 177182.CrossRefGoogle Scholar
Verheest, F. & Lakhina, G.S. 1996 Oblique solitary Alfvén modes in relativistic electron–positron plasmas. Astrophys. Space Sci. 240, 215224.CrossRefGoogle Scholar
Weinberg, S. 1972 Gravitation and cosmology: Principles and applications of the general theory of relativity. John Wiley & Sons.Google Scholar
Zank, G.P. & Greaves, R.G. 1995 Linear and nonlinear modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 51, 60796090.CrossRefGoogle ScholarPubMed