Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T03:10:50.818Z Has data issue: false hasContentIssue false

Propagation of hydromagnetic waves through a collisionless, heat-conducting plasma

Published online by Cambridge University Press:  13 March 2009

Tomikazu Namikawa
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka, Japan
Hiromitsu Hamabata
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka, Japan

Abstract

The propagation of small-amplitude hydromagnetic waves in a collisionless, heat-conducting plasma is investigated using the first-order Chew-Goldberger- Low (CGL) fluid equations including the effect of finite Larmor radius of the ion. The first-order heat flux equations are derived by use of Macmahon's technique. The zeroth-order velocity distribution function of the ion in the CGL expansion is assumed to be a heat-flux-bearing distribution function. The effect of heat flux on the propagation of hydromagnetic waves is analysed by use of phase speed and refractive index surfaces and the amplitude relation between the density perturbation and the magnetic field perturbation. It is shown that the hydromagnetic wave propagation characteristics are asymmetric with respect to the direction of external magnetic field to zeroth order and first order for magneto- acoustic and Alfvén waves, respectively, and the garden hose instability criterion is modified by the heat flux anisotropy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. J. 1967 J. Plasma Phys. 1, 361.CrossRefGoogle Scholar
Barnes, A. 1979 Solar System Plasma Physics (ed. Kennel, C. F., Lanzerotti, L. J. and Parker, E. N.). North-Holland.Google Scholar
Bowers, E. 1971 J. Plasma Phys. 6, 87.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Fedele, J. B. 1969 J. Plasma Phys. 3, 673.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. T. & Montgomery, M. D. 1973 J. Geophys. Res. 78, 6451.CrossRefGoogle Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids, 9, 1475.CrossRefGoogle Scholar
Gary, S. P. 1978 J.Plasma Phys. 20, 47.CrossRefGoogle Scholar
Hundhausen, A. J. 1970 Rev. Geophys. Space Phys. 8, 729.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Leubner, M. P. 1978 J. Geophys. Res. 83, 3900.CrossRefGoogle Scholar
Mckenzie, J. F. 1973 J. Fluids Mech. 58, 709.CrossRefGoogle Scholar
Macmahon, A. 1965 Phys. Fluids, 8, 1840.CrossRefGoogle Scholar
Morioka, S. & Spreiter, J. R. 1970 J. Plasma Phys. 4, 403.CrossRefGoogle Scholar
Sisson, A. E. & Yu, C. P. 1969 J. Plasma Phys. 3, 691.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, §34. McGraw-Hill.Google Scholar
Thompson, W. B. 1961 Rep. Prog. Phys. 24, 363.CrossRefGoogle Scholar
Wrang, Y. C. 1971 J. Geophys. Res. 76, 7503.Google Scholar
Yajima, N. 1966 Prog. Theoret. Phys. 36, 1.CrossRefGoogle Scholar