Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T07:33:19.274Z Has data issue: false hasContentIssue false

Propagation of hydromagnetic waves in a cold plasma mixed with hot electrons

Published online by Cambridge University Press:  13 March 2009

Hiromitsu Hamabata
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan
Tomikazu Namikawa
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan

Abstract

The propagation of small-amplitude hydromagnetic waves in a cold plasma mixed with hot electrons is investigated using the first order CGL equations for electrons. It is assumed that in an equilibrium state the electrons consist of two components, cold electrons and hot electrons with bi-Maxwellians. Propagation properties of hydromagnetic waves are analysed by use of phase speed and refractive index surfaces, polarization, and the amplitude ratio between perturbed density and magnetic field. It is shown that the existence of cold electrons affects the properties of hydromagnetic waves through finite frequency corrections only when the temperature anisotropy exists; and that the existence of cold electrons diminishes the resonance angle and the critical angle at which the polarization sense changes from left-handed to right-handed, and also weakens the tendency of intermediate waves to follow the lines of force of the static magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. J. 1967 J. Plasma Phys. 1, 361.CrossRefGoogle Scholar
Bezzerides, B., Forslund, D. W. & Lindman, E. L. 1978 Phys. Fluids, 21, 2179.CrossRefGoogle Scholar
Bowers, E. 1971 J. Plasma Phys. 6, 87.CrossRefGoogle Scholar
Buti, B. & Yu, M. Y. 1981 J. Plasma Phys. 26, 309.CrossRefGoogle Scholar
Chew, C. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 435.Google Scholar
Fedele, J. B. 1969 J. Plasma Phys. 3, 673.CrossRefGoogle Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids, 9, 1475.CrossRefGoogle Scholar
Goswami, B. N. & Buti, B. 1976 Phys. Lett. 57A, 149.CrossRefGoogle Scholar
Hamabata, H. 1983 J. Plasma Phys. 30, 291.CrossRefGoogle Scholar
Kato, Y., Tajiri, M. & Taniuti, T. 1966 J. Phys. Soc. Japan, 21, 765.CrossRefGoogle Scholar
Kavanagh, L. D., Freeman, J. W. & Chen, A. J. 1968 J. Geophys. Res. 73, 5511.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
Macmahon, A. 1965 Phys. Fluids, 8, 1840.CrossRefGoogle Scholar
Morioka, S. & Spreiter, J. R. 1970 J. Plasma Phys. 4, 403.CrossRefGoogle Scholar
Namikawa, T. & Hamabata, H. 1981 J. Plasma Phys. 26, 95.CrossRefGoogle Scholar
Namikawa, T., Hamabata, H. & Tanabe, K. 1981 J. Plasma Phys. 26, 83.CrossRefGoogle Scholar
Obayashi, T. 1970 Space Science – Solar Terrestrial Physics, p. 289. Shôkabô.Google Scholar
Sisson, A. E. & Yu, G. P. 1969 J. Plasma Phys. 3, 691.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, §3–4. McGraw-Hill.Google Scholar
Thompson, W. B. 1961 Rep. Prog. Phys. 24, 363.CrossRefGoogle Scholar
Yajima, N. 1966 Prag. Theoret. Phys. 36, 1.CrossRefGoogle Scholar
Yu, M. Y. & Shukla, P. K. 1983 J. Plasma Phys. 29, 409.CrossRefGoogle Scholar