Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T06:33:59.206Z Has data issue: false hasContentIssue false

Propagation characteristics and reflection of an ion-acoustic soliton in an inhomogeneous plasma having warm ions

Published online by Cambridge University Press:  13 March 2009

Sanjay Singh
Affiliation:
Centre of Energy Studies, Indian Institute of Technology, New Delhi – 110016, India
R. P. Dahiya
Affiliation:
Centre of Energy Studies, Indian Institute of Technology, New Delhi – 110016, India

Abstract

The problem of propagation of an ion-acoustic soliton and its reflection in a weakly inhomogeneous plasma is considered, taking into account the effect of finite ion temperature. A reductive perturbation analysis is carried out to obtain expressions for the local speed, amplitude and width of the soliton. The peak value of the soliton amplitude increases and the soliton width decreases with increasing ion temperature. An equation describing the dependence of the reflected-wave amplitude on ion temperature is obtained. The amplitude of the reflected wave is observed to decrease with increasing ion temperature on account of Landau damping.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, N. 1974 Prog. Theor. Phys. Suppl. 55, 52.CrossRefGoogle Scholar
Chang, H. Y., Raychaudhury, S., Hill, J., Tsikis, E. K. & Lonngren, K. E. 1986 Phys. Fluids, 29, 294.CrossRefGoogle Scholar
Dahiya, R. P., John, P. I. & Saxena, Y. C. 1978 Phys. Lett. 65A, 323.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Ikezi, H. 1973 Phys. Fluids, 16, 1668.CrossRefGoogle Scholar
Imen, K. & Kuehl, H. H. 1987 Phys. Fluids, 30, 73.CrossRefGoogle Scholar
Ko, K. & Kuehl, H. H. 1978 Phys. Rev. Lett. 40, 233.CrossRefGoogle Scholar
Kuehl, H. H. 1983 Phys. Fluids, 26, 1577.CrossRefGoogle Scholar
Kuehl, H. H. & Imen, K. 1985 Phys. Fluids, 28, 2375.CrossRefGoogle Scholar
Nishida, Y. 1984 Phys. Fluids, 27, 2176.CrossRefGoogle Scholar
Nishikawa, K. & Kaw, P. K. 1975 Phys. Lett. 50A, 455.CrossRefGoogle Scholar
Popa, G. & Oertl, M. 1983 Phys. Lett. 98A, 110.CrossRefGoogle Scholar
Rao, N. N. & Varma, R. K. 1979 Phys. Lett. 70A, 9.CrossRefGoogle Scholar
Sakanaka, P. H. 1972 Phys. Fluids, 15, 304.CrossRefGoogle Scholar
Tagare, S. G. 1973 Plasma Phys. 15, 1247.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 966.CrossRefGoogle Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.CrossRefGoogle Scholar