Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T00:45:59.860Z Has data issue: false hasContentIssue false

Progress on the small modular stellarator SCR-1: new diagnostics and heating scenarios

Published online by Cambridge University Press:  08 July 2020

F. Coto-Vílchez*
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
V. I. Vargas
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
R. Solano-Piedra
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
M. A. Rojas-Quesada
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
L. A. Araya-Solano
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
A. A. Ramírez
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
M. Hernández-Cisneros
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
J. E. Pérez-Hidalgo
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
A. Köhn-Seemann
Affiliation:
IGVP, University of Stuttgart, 70569, Stuttgart, Germany
F. Cerdas
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
F. Vílchez-Coto
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
D. Jiménez
Affiliation:
Advanced Computing Laboratory, Costa Rica National High Technology Center, CeNAT, 10109San José, Costa Rica
L. Campos-Duarte
Affiliation:
Advanced Computing Laboratory, Costa Rica National High Technology Center, CeNAT, 10109San José, Costa Rica
E. Meneses
Affiliation:
Advanced Computing Laboratory, Costa Rica National High Technology Center, CeNAT, 10109San José, Costa Rica School of Computing, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
M. González-Vega
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
S. Arias
Affiliation:
Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, P.O. Box 159-7050, Cartago, Costa Rica
*
Email address for correspondence: [email protected]

Abstract

This work presents updates in the diagnostics systems, magnetohydrodynamics (MHD) calculations and simulations of microwave heating scenarios of the small modular Stellarator of Costa Rica 1 (SCR-1). Similarly, the design of a flexible bolometer and magnetic diagnostics (a set of Mirnov coils, Rogowski coils and two diamagnetic loops) are introduced. Furthermore, new MHD equilibrium calculations for the plasma of the SCR-1 device were performed using the VMEC code including the poloidal cross-section of the magnetic flux surfaces at different toroidal positions, profiles of the rotational transform, magnetic well, magnetic shear and total magnetic field norm. Charged particle orbits in vacuum magnetic field were computed by the magnetic field solver BS-SOLCTRA (Vargas et al. In 27th IAEA Fusion Energy Conference (FEC 2018), 2018. IAEA). A visualization framework was implemented using Paraview (Solano-Piedra et al. In 23rd IAEA Technical Meeting on the Research Using Small Fusion Devices (23rd TM RUSFD), 2017) and compared with magnetic mapping results (Coto-Vílchez et al. In 16th Latin American Workshop on Plasma Physics (LAWPP), 2017, pp. 43–46). Additionally, simulations of microwave heating scenarios were performed by the IPF-FDMC full-wave code. These simulations calculate the conversion of the ordinary waves to extraordinary waves and allow us to identify the location where the conversion takes place. Finally, the microwave heating scenarios for the $330^{\circ }$ toroidal position are presented. The microwave heating scenarios showed that the O–X–B mode conversion is around 12–14 %. It was possible to identify the spatial zone where the conversion takes place (upper hybrid frequency).

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boozer, A. H. & Gardner, H. J. 1990 The bootstrap current in stellarators. Phys. Fluids B 2 (10), 24082421.CrossRefGoogle Scholar
Castellano, J., Jiménez, J. A., Hidalgo, C., Pedrosa, M. A., Fraguas, A. L., Pastor, I., Herranz, J., Alejaldre, C. & TJ-II Team 2002 Magnetic well and instability thresholds in the TJ-II stellarator. Phys. Plasmas 9, 713716.CrossRefGoogle Scholar
Coto-Vílchez, F., Vargas, V. I., Barillas, L., Sánchez-Castro, J., Queral, V., Vílchez-Coto, F., Cerdas, F., Asenjo, J., Mora, J., Zamora-Picado, E. et al. 2017 Vacuum magnetic flux surface measurements on the SCR-1 stellarator. In 16th Latin American Workshop on Plasma Physics (LAWPP), pp. 4346. IEEE.CrossRefGoogle Scholar
Hansen, F. R., Lynov, J. P., Maroli, C. & Petrillo, V. 1988 Full-wave calculations of the O–X mode conversion process. J. Plasma Phys. 39, 319337.CrossRefGoogle Scholar
Jiménez, D., Campos-Duarte, L., Solano-Piedra, R., Araya-Solano, L. A., Meneses, E. & Vargas, I. 2020 BS-SOLCTRA: Towards a parallel magnetic plasma confinement simulation framework for modular stellarator devices. In Communications in Computer and Information Science, Latin America High Performance Computing Conference (CARLA2019), pp. 3348. Springer.Google Scholar
Köhn, A., Jacquot, J., Bongard, M. W., Gallian, S., Hinson, E. T. & Volpe, F. A. 2011 Full-wave modeling of the O–X mode conversion in the Pegasus toroidal experiment. Phys. Plasmas 18, 082501.CrossRefGoogle Scholar
Köhn, A., Cappa, Á, Holzhauer, E., Castejón, F., Fernández, Á & Stroth, U. 2008 Full-wave calculation of the O–X–B mode conversion of Gaussian beams in a cylindrical plasma. Plasma Phys. Control. Fusion 50, 085018.CrossRefGoogle Scholar
Laqua, H. P. 2007 Electron Bernstein wave heating and diagnostic. Plasma Phys. Control. Fusion 49 (4), 142.CrossRefGoogle Scholar
Mora, J., Vargas, V. I., Asenjo, J., Barillas, L., Coto-Vílchez, F., Esquivel-S, R., Solano-Piedra, R., Otárola, C., Villalobos, E., Gatica-Valle, O. et al. 2016 First results of the stellarator of Costa Rica 1 (SCR-1). In 26th IAEA Fusion Energy Conference (FEC IAEA), pp. 1722. IAEA.Google Scholar
Nadeem, M., Rafiq, T. & Persson, M. 2001 Local magnetic shear and drift waves in stellarators. Phys. Plasmas 8, 43754385.CrossRefGoogle Scholar
Nagasaki, K. & Yanagi, N. 2002 Electron Bernstein wave heating in heliotron configurations. Plasma Phys. Control. Fusion 44, 409422.CrossRefGoogle Scholar
Solano-Piedra, R., Vargas, V. I., Köhn, A., Coto-Vílchez, F., Sanchez-Castro, J., López-Rodríguez, D., Rojas-Quesada, M. A., Mora, J. & Asenjo, J. 2017 Overview of the SCR-1 stellarator. In 23rd IAEA Technical Meeting on the Research Using Small Fusion Devices (23rd TM RUSFD). IAEA.Google Scholar
Vargas, V. I., Kohn, A., Meneses, E., Jiménez, D., Garro-Vargas, A., Solano-Piedra, R., Coto-Vílchez, F., Rojas-Quesada, M. A., López-Rodríguez, D., Sánchez-Castro, J. et al. 2018 Conversion of electrostatic Bernstein waves in the SCR-1 stellarator using a full wave code. In 27th IAEA Fusion Energy Conference (FEC 2018). IAEA.Google Scholar
Vargas, V. I., Mora, J., Otárola, C., Zamora, E., Asenjo, J., Mora, A. & Villalobos, E. 2015 Implementation of stellarator of Costa Rica 1 SCR-1. In 2015 IEEE 26th Symposium on Fusion Engineering (SOFE), pp. 16. IEEE.Google Scholar