Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T05:10:02.778Z Has data issue: false hasContentIssue false

Possible scenarios for the initial acceleration of electrons of the core of ball lightning

Published online by Cambridge University Press:  24 November 2015

M. L. Shmatov*
Affiliation:
Ioffe Institute, 194021 St Petersburg, Russia
*
Email address for correspondence: [email protected]

Abstract

A model for the initial acceleration of electrons of the core of ball lightning is presented, according to which this acceleration occurs on screening of the strong electric field of the positive charge injected into the atmosphere. Several scenarios for such injection, the factors favourable for the formation of ball lightning and possible experiments on such formation are considered.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babich, L. P. 2003 High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment and Natural Phenomena, ISTC Science and Technology Series, vol. 2. Futurepast.Google Scholar
Balyberdin, V. V. 1966 Investigation of the mechanism of formation of ionized whirl configuration in atmosphere. Samoletostr. Tekh. Vozd. Flota 5, 310 (in Russian).Google Scholar
Bazelyan, E. M. & Raizer, Yu. P. 2000 Lightning Physics and Lightning Protection. IOP Publishing.CrossRefGoogle Scholar
Berger, M. J., Inokuti, M., Anderson, H. H., Bichsel, H., Dennis, J. A., Power, D., Seltzer, S. M. & Turner, J. E.1984 Stopping powers for electrons and positrons. ICRU Report 37. International Commission on Radiation Units and Measurements, Bethesda, MD.CrossRefGoogle Scholar
Bethe, H. A. & Salpeter, E. E. 1957 Quantum Mechanics of One- and Two-Electron Atoms. Springer-Verlag.Google Scholar
Budyko, M. I. 1988 Atmosphere of Earth. In Fizicheskaya Encyclodediya (Physical Encyclopedia) (ed. Prokhorov, A. M.), vol. 1, pp. 133136. Sovetskaya Encyclopediya (in Russian).Google Scholar
Carlson, B. E., Lehtinen, N. G. & Inan, U. S. 2010 Terrestrial gamma ray flash production by active lightning leader channels. J. Geophys. Res. 115, A10324.Google Scholar
Celestin, S. & Pasko, V. P. 2011 Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J. Geophys. Res. 116, A03315.Google Scholar
Celestin, S., Xu, W. & Pasko, V. P. 2012 Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning. J. Geophys. Res. 117, A05315.Google Scholar
Cen, J., Yuan, P., Xue, S. & Wang, X. 2015 Resistance and internal electric field in cloud-to-ground lightning channel. Appl. Phys. Lett. 106, 054104.CrossRefGoogle Scholar
Cooray, V., Becerra, M. & Rakov, V. 2009 On the electric field at the tip of dart leaders in lightning flashes. J. Atmos. Sol.-Terr. Phys. 71, 13971404.Google Scholar
Cooray, V., Dwyer, J., Rakov, V. & Rahman, M. 2010 On the mechanism of X-ray production by dart leaders of lightning flashes. J. Atmos. Sol.-Terr. Phys. 72, 848855.CrossRefGoogle Scholar
Delone, N. B. & Krainov, V. P. 2001 Nelineinaya Ionizatsiya Atomov Lasernym Izlucheniem (Nonlinear Ionization of Atoms by Laser Radiation). Fizmatlit (in Russian).Google Scholar
Dmitriev, M. T., Bakhtin, B. I. & Martynov, V. I. 1981 Thermal effects of ball lightning. Zh. Tekh. Fiz. 51, 25672572; Sov. Phys. Tech. Phys. 26, 1518–1520.Google Scholar
Dwyer, J. R. 2004 Implications of x-ray emission from lightning. Geophys. Res. Lett. 31, L12102.Google Scholar
Dwyer, J. R. et al. 2004a Measurements of x-ray emission from rocket-triggered lightning. Geophys. Res. Lett. 31, L05118.Google Scholar
Dwyer, J. R. et al. 2004b A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys. Res. Lett. 31, L05119.CrossRefGoogle Scholar
Dwyer, J. R. et al. 2005 X-ray bursts associated with leader steps in cloud-to-ground lightning. Geophys. Res. Lett. 32, L01803.Google Scholar
Dwyer, J. R., Smith, D. M. & Cummer, S. A. 2012a High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev. 173, 133196.CrossRefGoogle Scholar
Dwyer, J. R., Schaal, M. M., Cramer, E., Arabshahi, S., Liu, N., Rassoul, H. K., Hill, J. D., Jordan, D. M. & Uman, M. A. 2012b Observation of a gamma-ray flash at ground level in association with a cloud-to-ground lightning return stroke. J. Geophys. Res. 117, A10303.CrossRefGoogle Scholar
Dwyer, J. R., Smith, D. M., Hazelton, B. J., Grefenstette, B. W., Kelley, N. A., Lowell, A. W., Schaal, M. M. & Rassoul, H. K. 2015 Positron clouds within thunderstorms. J. Plasma Phys. 81, 475810405.CrossRefGoogle Scholar
Grigor’ev, A. I. 2006 Sharovaya Molniya (Ball Lightning). YarGU (in Russian).Google Scholar
Guo, Y.-X., Yuan, P., Shen, X.-Zh. & Wang, J. 2009 The electrical conductivity of a cloud-to-ground lightning discharge channel. Phys. Scr. 80, 035901.Google Scholar
Gurevich, A. V. 1960 On the theory of runaway electrons. Zh. Eksp. Teor. Fiz. 39, 12961307; 1961 Sov. Phys. JETP 12, 904–912.Google Scholar
Hill, R. D. 1963 Investigation of electron runaway in lightning. J. Geophys. Res. 68, 62616266.Google Scholar
Imyanitov, I. M. 1988 Atmospheric electricity. In Fizicheskaya Encyclopediya (Physical Encyclopedia) (ed. Prokhorov, A. M.), vol. 1, pp. 144146. Sovetskaya Encyclopediya (in Russian).Google Scholar
Itikawa, Y. 2006 Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data 35, 3153.CrossRefGoogle Scholar
Jayakumar, V., Rakov, V. A., Miki, M., Uman, M. A., Schnetzer, G. H. & Rambo, K. J. 2006 Estimation of input energy in rocket-triggered lightning. Geophys. Res. Lett. 33, L05702.Google Scholar
Korolev, Yu. D. & Mesyats, G. A. 1991 Fizika Impuls’nogo Proboya Gazov (Physics of Pulse Breakdown in Gases). Nauka (in Russian).Google Scholar
Kuznetsov, N. M. 1965 Termodinamicheskie Funktsii i Udarnye Adiabaty Vozdukha pri Vysokikh Temperaturakh (Thermodynamic Functions and Shock Adiabats of Air at High Temperatures). Mashinostroenie (in Russian).Google Scholar
Longmire, C. L. & Longley, H. J.1973 Improvements in the treatment of Compton current and air conductivity in EMP problems. Defense Nuclear Agency Rep. AD-769 914 (DNA 3192T). National Technical Information Service, Springfield, VA.Google Scholar
Lowke, J. J. 2015 The initiation of lightning in thunderclouds – the possible influence of metastable nitrogen and oxygen molecules in initiating lightning streamers. J. Geophys. Res. 120, 31833190.Google Scholar
Murphy, T.1988 Total and differential electron collision cross sections for $\text{O}_{2}$ and $\text{N}_{2}$ . Tech. Rep. LA-11288-MS. Los Alamos National Laboratory, New Mexico.Google Scholar
Phelps, A. V.2008 Compilation of electron cross sections used by A. V. Phelps. Available at http://jilawww.colorado.edu/∼avp/collision_data/electronneutral/ELECTRON.TXT.Google Scholar
Phelps, A. V. & Pitchford, L. C. 1985 Anisotropic scattering of electrons by $\text{N}_{2}$ and its effect on electron transport. Phys. Rev. A 31, 29322949.CrossRefGoogle Scholar
Powell, J. R. & Finkelstein, D. 1970 Ball lightning. Am. Sci. 58, 262280.Google Scholar
Raizer, Yu. P. 2009 Fizika Gazovogo Razryada (Physics of Gas Discharge), 3rd edn. Izdatel’skii Dom Intellect (in Russian).Google Scholar
Rakov, V. A. & Uman, M. A. 2003 Lightning: Physics and Effects. Cambridge University Press.Google Scholar
Schram, B. L., De Heer, F. J., Van Der Wiel, M. J. & Kistemaker, J. 1965 Ionization cross sections for electrons (0.6–20 keV) in noble and diatomic gases. Physica 31, 94112.Google Scholar
Shaw, G. E. 1967 Background cosmic count increase associated with thunderclouds. J. Geophys. Res. 72, 46234626.Google Scholar
Shmatov, M. L.2001 Could Richman be killed by the electrical influence of the autonomous ball lightning? Preprint 1750. Ioffe Physical Technical Institute.Google Scholar
Shmatov, M. L. 2003 New model and estimation of the danger of ball lightning. J. Plasma Phys. 69, 507527.Google Scholar
Shmatov, M. L. 2004a Possibility of existence and expected properties of ball lightning in the atmospheres of Venus and Jupiter. J. Br. Interplanet. Soc. 57, 271276.Google Scholar
Shmatov, M. L. 2004b Ball lightning with energies of the order of $10^{9}$  J. In Proceedings of the 8th International Symposium on Ball Lightning, ISBL 04, 3–6 August 2004, National Central University, Chung-Li, Taiwan (ed. Liu, J.-Y., Ofuruton, H. & Kamogawa, M.), pp. 5156. Daito.Google Scholar
Shmatov, M. L. 2006 Expected spectrum of high-energy photons from ball lightning. J. Plasma Phys. 72, 277284.Google Scholar
Shmatov, M. L.2009 Radiation hazard of ball lightning: observational data and their theoretical explanation. Int. J. Unconv. Electromagn. Plasmas 2, 181–185. (Proceedings of the 9th International Symposium on Ball Lightning, ISBL-06, 16–18 August 2006, TUE Eindhoven, The Netherlands (ed. G. C. Dijkhuis, D. K. Callebaut and M. Lu)).Google Scholar
Shmatov, M. L. 2015a New model of initial acceleration of electrons of terrestrial gamma-ray flashes with a hard spectrum. Phys. Lett. A 379, 13581360.Google Scholar
Shmatov, M. L. 2015b Ball lightning with the nonrelativistic electrons of the core. J. Plasma Phys. 81, 905810406.Google Scholar
Singer, S. 1971 The Nature of Ball Lightning. Plenum.Google Scholar
Singer, S. 1977 Ball lightning. In Lightning, Physics of Lightning (ed. Golde, R. H.), vol. 1, pp. 409436. Academic.Google Scholar
Stakhanov, I. P. 1996 O Fizicheskoi Prirode Sharovoi Molnii (About the Physical Nature of Ball Lightning), 3rd edn. Nauchnyi Mir (in Russian).Google Scholar
Sze, S. M. 1981 Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons.Google Scholar
Tavani, M. et al. 2011 Terrestrial gamma-ray flashes as powerful particle accelerators. Phys. Rev. Lett. 106, 018501.Google Scholar
Thomson, E. M., Uman, M. A. & Beasley, W. H. 1985 Speed and current for lightning stepped leaders near ground as determined from electric field records. J. Geophys. Res. 90, 81368142.Google Scholar
Ventzel, E. S. 1969 Teoriya Veroyatnostei (Game Theory), 4th edn. Nauka (in Russian).Google Scholar
Wang, X., Yuan, P., Cen, J., Liu, J. & Li, Y. 2014 The channel radius and energy of cloud-to-ground lightning discharge plasma with multiple return strokes. Phys. Plasmas 21, 033503.Google Scholar
Wilson, C. T. R. 1925 The acceleration of ${\it\beta}$ -particles in strong electric fields such as those of thunderclouds. Proc. Camb. Phil. Soc. 22, 534538.CrossRefGoogle Scholar
Yoshida, S., Morimoto, T., Ushio, T., Kawasaki, Z.-I., Torii, T., Wang, D., Takagi, N. & Watanabe, T. 2008 High energy photon and electron bursts associated with upward lightning strokes. Geophys. Res. Lett. 35, L10804.Google Scholar