Published online by Cambridge University Press: 13 March 2009
The nonlinear propagation of a circularly polarized, electromagnetic wave in a collisional, infinite, magnetized plasma is considered. The presence of collisions leads to spatial variation in the amplitude of the wave field which gives rise to a time-independent ponderomotive force. The ponderomotive potential for a left (right) circularly polarized wave attains a maximum at the ion (electron) cyclotron frequency. In the vicinity of the cyclotron frequency it is shown to be always positive. A decrease in both the particle density and the real and imaginary parts of the complex wavenumber is shown to result from the effect of the ponderomotive force.