Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:18:14.062Z Has data issue: false hasContentIssue false

Ponderomotive effects on the expansion of a photoplasma in the microwave range

Published online by Cambridge University Press:  13 March 2009

B. Leloutre
Affiliation:
Service de Physique, Expérimentation et Analyses, CE Saclay, 91191 Gif-sur-Yvette Cedex, France
J. -P. Furtlehner
Affiliation:
Service de Physique, Expérimentation et Analyses, CE Saclay, 91191 Gif-sur-Yvette Cedex, France
P. Camus
Affiliation:
Laboratoire Aimé Cotton, CNRS II, Bâtiment 505, Campus d'Orsay, 91405 Orsay Cedex, France

Abstract

An increase in the expansion rate towards vacuum of a plasma column with density of order 108 cm−3 and radius 0·5–2·0 mm produced by photoionization in the presence of a 9·4 GHz microwave field is found. The microwave field imposed by the TEM005 Gaussian mode of a spherical Fabry–Pérot resonator acts on the plasma through its ponderornotive force. First, the use of a potential barrier spectrometer allows us to measure the increase, in the number and energy of escaping electrons compared with the same plasma without microwave field. Secondly, the expansion of the modified photoplasma is checked by applying a small polarization voltage on the Fabry-Pérot mirrors to collect the ions. In the presence of the microwave field the time-resolved ion peak. Which presents a two-lobe profile faster than the single one observed without the field, indicates strong modification of the plasma dynamics. All these observations are interpreted by a simple model including the ponderomotive microwave force and the electrostatic plasma force, which act in opposite directions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, P., Kupersztych, J., Lompré, L. A., Petite, G. & Yergeau, F. 1985 Phys. Rev. A 36, 4111.CrossRefGoogle Scholar
Babin, F. & Gagné, J.-M. 1992 Appl. Phys. B54, 35.CrossRefGoogle Scholar
Battaglia, A., Gozzini, A. & Boudouris, G. 1970 Nuovo Cim 69B, 121.CrossRefGoogle Scholar
Boyd, G. D. & Gordon, J. P. 1961 Bell Syst. Tech. J. 40, 489.CrossRefGoogle Scholar
Broglia, M., Catoni, F., Montone, A. & Zampetti, P. 1987 Phys. Rev. A36, 705.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics and Controlled Fusion, Vol. I, §4.6, p. 95. Plenum, New York.Google Scholar
Fox, A. G. & Li, T. 1961 Bell Syst. Tech. J. 40, 453.CrossRefGoogle Scholar
Freeman, R. R., McIlrath, T. J., Bucksbaum, P. H. & Bashkansky, M. 1986 Phys. Rev. Lett. 57, 3156.CrossRefGoogle Scholar
Furtlehner, J. P., Blanchet, A. & Leloutre, B. 1994 Rev. Sci. instrum. 65, 2984.CrossRefGoogle Scholar
Gallagher, T. F. 1988 Phys. Rev. Lett. 61, 2304.CrossRefGoogle Scholar
Hall, R. B. 1969 J. Appi. Phys. 40, 36.CrossRefGoogle Scholar
Kibble, T. W. B. 1966 Phys. Rev. Lett. 16, 1054.CrossRefGoogle Scholar
Kim, K. S. & Brown, H. H. 1987 Phys. Rev. A35, 778.CrossRefGoogle Scholar
Kruer, W. L. 1988 The Physics of Laser Plasma Interactions, pp. 6062. Addison-Wesley, Reading, Massachusetts.Google Scholar
Kupersztych, J. 1985 Phys. Rev. Lett. 54, 1385.CrossRefGoogle Scholar
Kupersztych, J. 1987 Europhys. Lett. 4, 23.CrossRefGoogle Scholar
Kupersztych, J. 1990 Physica Scripta 42, 51.CrossRefGoogle Scholar
Landau, L. & Lifshitz, E. 1976 Mechanics, 3rd edn.Pergamon Press, Oxford.Google Scholar
Lavancier, J., Normand, D., Cornaggia, C. & Morellec, J. 1990 J. Phys. B23, 1839.Google Scholar
Leloutre, B. 1994 Thèse, Université Paris-Sud.Google Scholar
Litvak, A. G. 1986 Dynamic nonlinear electromagnetic phenomena in plasmas. Reviews of Plasma Physics (ed. Leontovitch, M.A.), pp. 293298. Consultants Bureau, New York.Google Scholar
Marquès, J. R., Amiranoff, F., Dyson, A., Matthieussent, G., Benkheiri, P., Gregory, .C, Jacquet, F., Miné, PH., Montes, B., Poilleux, P., Stenz, C., Mora, P., & Couédard, C. 1993 Phys. Fluids B5, 597.CrossRefGoogle Scholar
Moore, C. E. 1958 Atomic Energy Levels, NBS 35, Vol. III. U.S. Government Printing Office, Washington, DC.Google Scholar
Rinneberg, H., Neukammer, J., Jonsson, G., Hieronymous, H., Konig, A. & Vietzline, K. 1985 Phys. Rev. Lett. 55, 382.CrossRefGoogle Scholar
Sergeichev, K. F. & Gekker, I. R. 1975 Microwave-Plasma interactions. Proceedings of the P. N. Lebedev Physics Institute, Vol. 73. Consultants Bureau, New York.Google Scholar