Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-04T19:54:19.815Z Has data issue: false hasContentIssue false

Plasmons carrying orbital angular momentum in quantum plasmas

Published online by Cambridge University Press:  13 August 2013

SHABBIR A. KHAN
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan ([email protected])
S. ALI
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan ([email protected])
J. T. MENDONCA
Affiliation:
IPFN, Instituto Superior T′echnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

The existence of plasmons with orbital angular momentum due to the Laguerre–Gaussian-type density and potential perturbations is studied in an unmagnetized quantum plasma. Starting from appropriate hydrodynamic equations for the electrostatic electron dynamics, a dispersion equation is derived in paraxial approximation. The Laguerre–Gaussian beam solutions are obtained and the properties of electric field components, energy flux, and corresponding angular momentum density of plasmons are investigated. The electric field lines are found to form helical structures with a dominant axial component. The results are analyzed numerically and the influence of radial and angular mode numbers on potential and electric field components is illustrated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S., Davies, J. R. and Mendonca, J. T. 2010 Phys. Rev. Lett. 105, 035001.CrossRefGoogle Scholar
Ali, S. and Mendonca, J. T. 2011 Plasma Phys. Control. Fusion 53, 045007.CrossRefGoogle Scholar
Allen, L.et al. 1992 Phys. Rev. A 45, 8185.CrossRefGoogle Scholar
Atwater, H. A. 2007 Sci. Am. 296, 56.CrossRefGoogle Scholar
Basagoiti, M. A. V. 1998 Phys. Rev. D 57, 7618.Google Scholar
Bellac, M. L. and Manuel, C. 1997 Phys. Rev. D 55, 3215.Google Scholar
Beth, R. A. 1936 Rev. Mod. Phys. 50, 115.Google Scholar
Crouseilles, N., Hervieux., P.-A. and Manfredi, G. 2008 Phys. Rev. B 78, 155412.CrossRefGoogle Scholar
Dienerowitz, M., Mazilu, M. and Dholakia, K. 2008 J. Nanophoton. 2, 021875.CrossRefGoogle Scholar
Eliasson, B. and Shukla, P. K. 2011 Phys. Rev. E 83, 046407.Google Scholar
Glenzer, S. H. 2007 AIP Conf. Proc. 926, 8.CrossRefGoogle Scholar
Glenzer, S. H. and Redmer, R. 2009 Rev. Mod. Phys. 81, 1625.CrossRefGoogle Scholar
Haas, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Hains, M. G. 2001 Phys. Rev. Lett. 87, 135005.CrossRefGoogle Scholar
Harwitt, M. 2003 Astrophys. J. 597, 1266.CrossRefGoogle Scholar
Hefferon, G., Sharma, A. and Kourakis, I. 2010 Phys. Lett. A 374, 4336.CrossRefGoogle Scholar
Itoh, N.et al. 1982 Phys. Rev. Lett. 49, 1932.CrossRefGoogle Scholar
Jackson, J. D. 1962 Classical Electrodynamics, 2nd edn. New York: Wiley.Google Scholar
Jauch, J. M. and Rohrlich, F. 1976 The Theory of Photons and Electrons. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Jung, Y.-D. and Murakami, I. 2009 Phys. Lett. A 373, 969.CrossRefGoogle Scholar
Khan, S. A. and Saleem, H. 2009 Phys. Plasmas 16, 052109.CrossRefGoogle Scholar
Kim, H.et al. 2010 Nano Lett. 10, 529.CrossRefGoogle Scholar
Lembessis, V. E.et al. 2011 J. Opt. 13, 064002.CrossRefGoogle Scholar
Maier, S. A. 2007 Plasmonics: Fundamentals and Applications. New York: Springer-Verlag.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Marklund, M.et al. 2008 Euro. Phys. Lett. 84, 17006.CrossRefGoogle Scholar
Mendonca, J. T. 2011 Phys. Plasma 18, 062101.CrossRefGoogle Scholar
Mendonca, J. T., Ali, S. and Thide, B. 2009a Phys. Plasma 16, 112103.CrossRefGoogle Scholar
Mendonca, J.T., Thide, B. and Then, U. 2009b Phys. Rev. Lett. 102, 185005.CrossRefGoogle Scholar
O'Neil, A. T.et al. 2002 Phys. Rev. Lett. 88, 053601.CrossRefGoogle Scholar
Pacifici, D. 2007 Nature Photon. 1, 689.CrossRefGoogle Scholar
Padgett, M. and Bowman, R. 2011 Nature Photon. 5, 343.CrossRefGoogle Scholar
Pines, D. and Schrieffer, J. R. 1962 Phys. Rev. 125, 804.CrossRefGoogle Scholar
Serbeto, A.et al. 2009 Plasma Phys. Control. Fusion 51, 124024.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2007 Phys. Lett. A 372, 2893.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2008 Phys. Lett. A 372, 2897.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 J. Plasma Phys. 76, 887.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Shukla, P. K., Eliasson, B. and Stenflo, L. 2012 Phys. Rev. E 86, 016403.CrossRefGoogle Scholar
Shukla, P. K.et al. 2009 Phys. Lett. A 373, 3165.CrossRefGoogle Scholar
Son, S. and Fisch, N. J. 2004 Phys. Lett.A 329, 76.CrossRefGoogle Scholar
Son, S., Ku, S. and Moon, S. J. 2010 Phys. Plasmas 17, 112709.CrossRefGoogle Scholar
Stenholm, S. 1986 Rev. Mod. Phys. 58, 699.CrossRefGoogle Scholar
Stix, T. H. 1992 Waves in Plasmas. New York: American Institute of Physics.Google Scholar
Tannoudji, C. C., Dupont-Roc, J. and Grynberg, G. 1989 Photons and Atoms. New York: Wiley.Google Scholar
Verbeeck, J., Tian, H. and Schattschneider, P. 2010 Nature 467, 301.CrossRefGoogle Scholar