Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T05:27:35.680Z Has data issue: false hasContentIssue false

Phenomenology of hydromagnetic turbulence in a uniformly expanding medium

Published online by Cambridge University Press:  13 March 2009

William H. Matthaeus
Affiliation:
Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA
Gary P. Zank
Affiliation:
Bartol Research Institute, University of Delaware, Newark, Delaware 19716, USA
Sean Oughton
Affiliation:
Department of Mathematics, University College London, London WCIE 6BT, UK

Abstract

A simple phenomenology is developed for the decay and transport of turbulence in a constant-speed, uniformly expanding medium. The fluctuations are assumed to be locally incompressible, and either of the hydrodynamic or non-Alfvénic magnetohydrodynamic (MHD) type. In order to represent local effects of nonlinearities, a simple model of the Kaármá-Dryden type for locally homogeneous turbulent decay is adopted. A detailed discussion of the parameters of this familiar one-point hydrodynamic closure is given, which has been shown recently to be applicable to non-Alfvénic MHD as well. The effects of the large-scale flow and expansion are incorporated using a two-scale approach, in which assumptions of particular turbulence symmetries provide simplifications. The derived model is tractable and provides a basis for understanding turbulence in the outer heliosphere, as well as in other astrophysical applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, A. 1979 Hydromagnetic waves and turbulence in the solar wind. Solar System Plasma Physics, Vol.I (ed. Parker, E. N., Kennel, C. F. and Lanzerotti, L. J.), p. 251. North-Holland, Amsterdam.Google Scholar
Belcher, J. W. and Davis, L. 1971 Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534.Google Scholar
Bieber, J. W., Wanner, W. and Matthaeus, W. H. 1996 Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511.CrossRefGoogle Scholar
Bradshaw, P., Cebeci, T. and Whitelaw, J. 1981 Engineering Calculation Methods for Turbulent Flow. Academic Press, New York.Google Scholar
Coleman, P.J. 1968 Turbulence, viscosity, and dissipation in the solar wind plasma. Astrophys. J. 153, 371.CrossRefGoogle Scholar
Cornte-Bellot, C. and Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 24, 657.CrossRefGoogle Scholar
Dobrowolny, M., Mangeney, A. and Veltri, P., 1980 Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144.CrossRefGoogle Scholar
Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 7.Google Scholar
Elsässer, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.CrossRefGoogle Scholar
Forsyth, R. J., Horbury, T. S., Balogh, A. and Smith, E. J. 1996 Hourly variances of fluctuations in the heliospheric magnetic field out of the ecliptic plane. Geophys. Rev. Lett. 23, 595.CrossRefGoogle Scholar
Goldstein, M. L., , R. D. A. and Matthaeus, W. H. 1995 Magnetohydrodynamic turbulence in the solar wind. Ann. Rev. Astron. Astrophys. 33, 283.CrossRefGoogle Scholar
Hollweg, J. V. 1974 Transverse Alfvén waves in the solar wind: arbitrary k, v0, B0 and δb. J. Geophys. Res. 79, 1539.Google Scholar
Hossain, M., Gray, P.C., Pontius, D. H., Matthaeus, W. H. and Oughton, S. 1995 Phenomenology for the decay of energy-containing eddies in homogeneous mhd turbulence. Phys. Fluids 7, 2886.Google Scholar
Jokipii, J. R. and Kota, J. 1989 The polar heliospheric magnetic field. Geophys. Rev. Lett. 16, 1.Google Scholar
Jones, W. P. and Launder, B. 1972 Calculation of low-Reynolds-number phenomena with a 2-equation model of turbulence. Int. J. Heat Mass Transf. 15, 301.Google Scholar
Kármán, T. von and Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A164, 192.Google Scholar
Kármán, T. von and Lin, C. C. 1949 On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys. 21, 516.CrossRefGoogle Scholar
Kármán, T. von and Lin, C. C. 1987 On the statistical theory of turbulence. Selected Papers of C.C.Lin, Vol.1, p. 135. World Scientific, Singapore.CrossRefGoogle Scholar
Klein, L. W., Roberts, D. A. and Goldstein, M. L. 1991 Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere. J. Geophys. Res. 96, 3779.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 On degeneration of isotropic turbulence in an incompressible viscous liquid. C.R. Acad. Sci. URSS 31, 538.Google Scholar
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385.CrossRefGoogle Scholar
Marsch, B. and Tu, C.-Y. 1989 Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence. J. Plasma Phys. 41, 479.Google Scholar
Marsch, B. and Tu, C.-Y. 1993 Modeling results on spatial transport and spectral transfer of solar wind Alfvénic turbulence. J. Geophys. Res. 98, 21045.CrossRefGoogle Scholar
Matthaeus, W. H. and Goldstein, M. L. 1982 a Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011.CrossRefGoogle Scholar
Matthaeus, W. H. and Goldstein, M. L. 1982b Stationarity of magnetohydrodynamic fluctuations in the solar wind. J. Geophys. Res. 87, 10347.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. and Roberts, D. A. 1990 Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673.Google Scholar
Matthaeus, W. H., Oughton, S., Pontius, D. and Zhou, Y. 1994 Evolution of energy containing turbulent eddies in the solar wind. J. Geophys. Res. 99, 19267.CrossRefGoogle Scholar
Orszag, S. A. 1977 Lectures on the statistical theory of turbulence. Fluid Dynamics. Les Flouches Summer School, 1973 (ed. Balian, R. and Peube, J.-L.), p. 235. Gordon and Breach, New York.Google Scholar
Oughton, S. 1993 Transport of solar wind fluctuations: a turbulence approach. PhD thesis, University of Delaware, Newark.Google Scholar
Oughton, S. and Matthaeus, W. H. 1995 Linear transport of solar wind fluctuations. J. Geophys.Res. 100, 14783.CrossRefGoogle Scholar
Roberts, D. A., Goldstein, M. L. and Klein, L. W. 1990 The amplitudes of interplanetary fluctuations: stream structure, heliocentric distance, and frequency dependence. J. Geophys. Res. 95, 4203.Google Scholar
Roberts, D.Klein, L.W., Goldstein, M. L. and Matthaeus, W. H. 1987 a The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations. J. Geophys. Res. 92, 11021.CrossRefGoogle Scholar
Roberts, D. A.Goldstein, M. L., Klein, L. W. and Matthaeus, W. H. 1987 b Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons. J. Geophys. Res. 92, 12023.Google Scholar
Saffman, P. G. 1967 Note on decay of homogeneous turbulence. Phys. Fluids 10, 1349.CrossRefGoogle Scholar
Schmidt, J. M. and Marsch, E. 1995 Spatial transport and spectral transfer of solar wind turbulence composed of Alfvén waves and convective structures. I: The theoretical model. Ann. Geophys. 13, 459.CrossRefGoogle Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Parts 1–4. Proc. R. Soc. Lond. A151, 421.Google Scholar
Tu, C.-Y and Marsch, E. 1990 Transfer equations for spectral densities of inhomogeneous mhd turbulence. J. Plasma Phys. 44, 103.Google Scholar
Tu, C.-Y. and Marsch, E. 1993 A model of solar wind fluctuations with two components: Alfvén waves and convective structures. J. Geophys. Res. 98, 1257.Google Scholar
Verma, M. K. and Roberts, D. A. 1993 The radial evolution of the amplitudes of ‘dissipationless’ turbulent solar wind fluctuations. J. Geophys. Res. 98, 5625.CrossRefGoogle Scholar
Verma, M. K., Roberts, D. A.Goldstein, M. L., Ghosh, S. and Stribling, W. T. 1996 A numerical study of the nonlinear cascade of energy in magnetohydrodynamic turbulence. J. Geophys. Res., in press.Google Scholar
Zank, G. P., Matthaeus, W. H. and Smith, C. W. 1996 Evolution of turbulent magnetic fluctuation power with heliocentric distance. J. Geophys. Res. 101, 17093.Google Scholar
Zhou, V. and Matthaeus, W. H. 1990 a Transport and turbulence modeling of solar wind fluctuations. J. Geophys.Res. 95, 10291.Google Scholar
Zhou, Y. and Matthaeus, W. H. 1990 b Remarks on transport theories of interplanetary fluctuations. J. Geophys. Res. 95, 14863.CrossRefGoogle Scholar