Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:32:08.389Z Has data issue: false hasContentIssue false

Parametric decay instability of an upper-hybrid wave in a two-temperature plasma

Published online by Cambridge University Press:  13 March 2009

S. Konar
Affiliation:
School of Physics, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India
V. Rai
Affiliation:
School of Physics, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India

Abstract

Parametric decay of an upper-hybrid pump into another upper-hybrid wave and a low-frequency lower-hybrid mode is considered in a two-electron temperature plasma. Expressions for the nonlinear dispersion relation and growth rate are obtained. It is found that the growth rate is quite sensitive to the hot-electron temperature and the density ratio of the hot and the cold components only when the side-band frequency is close to the second or third harmonic of the cyclotron frequency. The relevance of our investigation to Q machines and the ELMO bumpy torus is pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, E., Krause, K. & Schultz, H. 1977 Phys. Lett. 60 A, 411.CrossRefGoogle Scholar
Ashour-Abadalla, M. & Kennel, C. F. 1975 Magnetospheric Particles and Fluids (ed. McCormac, B. M.).Google Scholar
Asthana, M. & Guha, S. 1992 Contrib. Plasma Phys. 32, 37.CrossRefGoogle Scholar
Estabrook, K. & Kruer, W. L. 1978 Phys. Rev. Lett. 40, 42.CrossRefGoogle Scholar
Flechman, W. C., Asbridge, J. R., Montgomery, M. D., Bame, S. J. & Grary, S. P. 1975 J. Geophys. Res. 80, 4181.Google Scholar
Forsulund, D. W., Kindel, J. M. & Lee, K. 1977 Phys. Rev. Lett. 39, 284.CrossRefGoogle Scholar
Grek, B. & Porkolab, M. 1973 Phys. Rev. Lett. 30, 836.CrossRefGoogle Scholar
Guest, G. E. & Miller, R. L. 1988 Nucl. Fusion 28, 3.CrossRefGoogle Scholar
Guha, S. & Asthana, M. 1989 J. Plasma Phys. 42, 241.CrossRefGoogle Scholar
Idehara, T., Takedo, M. & Ishida, Y. 1974 Phys. Lett. 46 A, 409.CrossRefGoogle Scholar
Jain, V. K. 1981 D.Phil. thesis, University of Sussex.Google Scholar
Jones, W. D., Lee, A., Gleman, S. M. & Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Lee, K. F. 1974 a Phys. Fluids 17, 1220.CrossRefGoogle Scholar
Lee, K. F. 1974 b IEEE Trans. Plasma Sci. 2, 187.CrossRefGoogle Scholar
Lin, A. T. & Lin, C. C. 1981 Phys. Rev. Lett. 47, 98.CrossRefGoogle Scholar
Lin, A. T., Lin, C. C. & Dawson, J. M. 1984 Phys. Fluids 25, 646.CrossRefGoogle Scholar
Lisak, M. J. 1980 Plasma Phys. 24, 445.CrossRefGoogle Scholar
Murtaza, G. & Shukla, P. K. 1984 J. Plasma Phys. 31, 423.CrossRefGoogle Scholar
Nishida, Y. & Nagasawa, T. 1986 Phys. Fluids 29, 345.CrossRefGoogle Scholar
Salimullah, M. & Liu, Y. G. 1985 Phys. Rev. A 31, 4005.CrossRefGoogle Scholar
Sanmartin, J. R., Ramis, R., Montanes, J. L. & Snaz, J. 1977 Phys. Rev. Lett. 39, 2841.Google Scholar
Sharma, S. K. & Sudarshan, A. 1991 J. Plasma Phys. 46, 99.CrossRefGoogle Scholar
Shoucri, M. & Kuehl, H. H. 1980 Phys. Fluids 23, 2461.CrossRefGoogle Scholar