Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T19:12:39.286Z Has data issue: false hasContentIssue false

On the stability of nonlinear magneto-sonic waves in a collisionless plasma

Published online by Cambridge University Press:  13 March 2009

V. V. Demchenko
Affiliation:
Atomic Energy Authority, Cairo
A. M. Hussein
Affiliation:
Atomic Energy Authority, Cairo

Abstract

The stability of a magneto-sonic wave of small (but finite) amplitude, propagating in a low- β plasma across a magnetic field, is investigated. It is shown that such a wave is unstable with respect to parametric splitting into many satellite waves. Wavenumbers of the satellite waves differ from that of the original magneto-sonic wave. Thus, the sateffite waves leave an interaction space, and form oscillating ‘tails ’ in front of and behind the initial pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ames, W. F. 1968 Nonlinear Ordinary Differential Equations in Transport Processes. Academic.Google Scholar
Barbian, E. P. & Jurgens, B. 1971 Proc. 3rd Int. Conf. on Q Plasmas, Elsimore, p. 317.Google Scholar
Biskamp, D.& Chodura, R. 1971 Phys. Rev. Lett. 27, 1553.Google Scholar
Biskamp, D. & Chodura, R. 1972 Proc. 5th European Conf. on Controlled Fusion and Plasma Phys., Grenoble, vol. 2, p. 93.Google Scholar
Bogoliuboff, N. N. & Mitropolsky, Yu. 1961 Asymptotic Methods of Nonlinear Oscillation Theory. Delhi: Hmdustan.Google Scholar
Demchenko, V. V. & El-Naggar, I. A. 1972 Phys. Lett. 39A, 205.CrossRefGoogle Scholar
Demchenko, V. V., El-Naggar, I. A. & Hussein, A. M. 1973 Nucl. Fusion, 13.Google Scholar
Forslund, D., Morse, R. & Nielson, C. 1970 Phys. Rev. Lett. 25, 1226.Google Scholar
Franklin, R. N., Hamberger, S. M., Ikezi, H., Lampies, G. & Smith, G. J. 1972 Phys. Rev. Lett. 28, 1114.Google Scholar
Hayashi, C. 1964 Nonlinear Oscillations in Physical Systems. McGraw-Hill.Google Scholar
Hintz, E. 1972 Proc. 5th European Conf. on Controlled Fusion and Plasma Phys., vol. 2, p. 119.Google Scholar
Jahnke, E. & Emde, F. 1945 Tables of Functions with Formulae and Curves. Dover.Google Scholar
O'Neil, T. 1965 Phys. Fluids, 8, 570, 2255.CrossRefGoogle Scholar
Paul, J. W. M. 1971 Culham Laboratory Reprint CLP.P290.Google Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Phys. (ed. Leontovich, M. A.), vol. 4, p. 23. New York: Consultants Bureau.Google Scholar
Tidman, D. A. & Krall, A. 1971 Shock Waves in Collisionless Plasmas. Wiley.Google Scholar
Van Wakeren, J. H. A. & Hopman, H. J. 1972 Phys. Rev. Lett. 28, 225.Google Scholar
Whittaker, E. T. & Watson, G. N. 1935 A Course of Modern Analysis. Cambridge University Press.Google Scholar