Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T03:49:38.843Z Has data issue: false hasContentIssue false

On the range of validity of the semirelativistic magnetohydrodynamic equations

Published online by Cambridge University Press:  09 June 2014

Manuel Núñez*
Affiliation:
Sección de Matemáticas and IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
*
Email address for correspondence: [email protected]

Abstract

Plasmas with moderate flow velocity and sound speed, but large Alfvén speed have been described by the semirelativistic magnetohydrodynamics (MHD) equations. While these are correct when restricted to their range of validity, they may have the undesirable effect of predicting unphysical accelerations, much faster than the ones of classical MHD. We present a family of planar models on which the Lorentz force acts more forcefully in the semirelativistic approach, yielding a flow velocity which rapidly exceeds the limits within which the equations are valid.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcubierre, M. 2008 Introduction to 3+1 Numerical Relativity. Oxford: Oxford Science Publications.Google Scholar
Anile, A. M. 1989 Relativistic Fluids and Magneto-Fluids. Cambridge: Cambridge University Press.Google Scholar
Baumgarte, T. W. and Shapiro, S. L. 2010 Numerical Relativity: Solving Einstein's Equations of the Computer. Cambridge: Cambridge Univ. Press.Google Scholar
Boris, J. P. 1970 A physically motivated solution of the Alfvén problem, (tech. report); NRL Memorandum Report 2167 (Naval Research Laboratory, Washington DC).Google Scholar
Bucciantini, N. and Del Zanna, L., 2011 General relativistic magnetohydrodynamics in axisymmetric dynamical spacetimes: the X-ECHO code. Astron. Astrophys. 528, A101 118.CrossRefGoogle Scholar
Childress, S. and Gilbert, A. 1995 Stretch, Twist, Fold: The Fast Dynamo. New York: Springer.Google Scholar
Gombosi, T. I., Toth, G., De Zeeuw, D. L., Hansen, K. C., Kabin, K. and Powell, K. G. 2002 Semirelativistic magnetohydrodynamics and physics-based convergence acceleration. J. Comp. Phys. 177, 176205.Google Scholar
Green, A. E. and Taylor, G. I. 1937 Mechanism for the production of small eddies from larger ones. Proc. Roy. Soc. A 158, 400521.Google Scholar
Honkkila, V. and Janhunen, P. 2007 HLLC solver for ideal relativistic MHD. J. Comp. Phys. 223, 643656.Google Scholar
Kármán, T. von 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233252.Google Scholar
Koide, T., Denicol, G. S., Mota, Ph. and Kodama, T. 2007 Relativistic dissipative hydrodynamics: a minimal causal theory. Phys. Rev. C 75, 034909 110.Google Scholar
Lichnerowicz, A. 1967 Relativistic Hydrodynamics and Magnetohydrodynamics. New York: Benjamin.Google Scholar
Marklund, M. and Clarkson, C. 2005 The general relativistic MHD dynamo equation. Month. Not. Roy. Astr. Soc. 358, 892900.CrossRefGoogle Scholar
Meier, D. L. 2004 Ohm's law in the fast lane: general relativistic charge dynamics. Astrophys. J. 605, 340349.Google Scholar
Muronga, A. 2004 Causal theories of dissipative relativistic fluid dynamics for nuclear collisions. Phys. Rev. C 69, 034903 116.Google Scholar
Palenzuela, C., Lehner, L., Reula, O. and Rezzolla, L. 2009 Beyond ideal MHD: towards a more realistic modelling of relativistic ideal plasmas. Month. Not. Roy. Astr. Soc. 394, 17271740.Google Scholar
Powell, K. G., Gombosi, T. I., DeZeeuw, D. L., Ridley, A. J., Sokolov, I. V., Stout, Q. F. and Toth, G. 2003 Parallel, adaptive-mesh-refinement MHD for global space-weather simulations. In: Solar Wind Ten: Proceedings of the Tenth International Solar Wind Conference, Vol. 679(1) (eds. Velli, M., Bruno, R. and Malara, F.). College Park, Maryland: American Institute of Physics, pp. 807814.Google Scholar