Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T07:01:06.687Z Has data issue: false hasContentIssue false

On the quantum space–time structure of light

Published online by Cambridge University Press:  17 August 2010

A. GUERREIRO*
Affiliation:
Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal INESC Porto, Unidade de Optoelectrónica e Sistemas Electrónicos, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal ([email protected])

Abstract

We extend the quantum theory of Time Refraction for a generic spatial and temporal modulation of the optical properties of a medium, such as a dielectric or a gravitational field. The derivation of the local Bogoliubov transformations relating the global electromagnetic modes (valid over the entire span of space and time) with the local modes (valid for the vicinity of each spatial and temporal position) is presented and used in the evaluation of vacuum photon creation by the optical modulations of the medium. We use this approach to relate and review the results of different quantum effects such as the dynamical Casimir effect, space and Time Refraction, the Unruh effect and radiation from superluminal non-accelerated optical boundaries.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Unruh, W. G. 1976 Notes on black-hole evaporation. Phys. Rev. D 14, 870892.Google Scholar
[2]Birrel, N. D. and Davies, P. C. W. 1982 Quantum Fields in Curved Space. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
[3]Hawking, S. W. 1974 Nature Lond. 248, 30.CrossRefGoogle Scholar
[4]Hawking, S. W. 1975 Commun. Math. Phys. 43, 199.CrossRefGoogle Scholar
[5]Dodonov, V. V., Klimov, A. B. and Manko, V. I. 1989 Commun. Math. Phys. 43, 199.Google Scholar
[6]Dodonov, V. V., Klimov, A. B. and Nikonov, D. E. 1993 Phys. Rev. A 47, 4422.CrossRefGoogle Scholar
[7]Uhlmann, M., Plunien, G., Schutzhold, R. and Soff, G. 2004 Phys. Rev. Lett. 93, 193601.CrossRefGoogle Scholar
[8]Mendonça, J. T., Guerreiro, A. and Martins, A. M. 2000 Quantum theory of Time Refraction. Phys. Rev. A 62, 033805.CrossRefGoogle Scholar
[9]Mendonça, J. T., Martins, A. M. and Guerreiro, A. 2003 Temporal beam splitter and temporal interference. Phys. Rev. A 68, 033805.CrossRefGoogle Scholar
[10]Leonhardt, U. and Piwnicki, P. 2000 Phys. Rev. Lett. 84, 822.CrossRefGoogle Scholar
[11]Casimir, H. B. G. A. 1948 Proc. K. Ned. Akad. Wet. 51, 795.Google Scholar
[12]Guerreiro, A., Mendonça, J. T. and Martins, A. M. 2005 J. Opt. B: Quantum Semiclas. Opt. 7, S69.CrossRefGoogle Scholar
[13]Mendonça, J. T. and Guerreiro, A. 2005 Time Refraction and the quantum properties of vacuum. Phys. Rev. A 72, 063805.CrossRefGoogle Scholar
[14]Dalton, B. J., Barnett, S. M. and Knight, P. L. 1999 Quasi mode theory of the beam splitter-a quantum scattering theory approach. J. Mod. Opt. 46 (10), 15591577.Google Scholar
[15]Schwinger, J., DeRaad, L. L. Jr and Milton, K. A. 1978 Casimir effect in dielectrics. Ann. Phys. 115 (1), 123.CrossRefGoogle Scholar
[16]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
[17]Silva, L. O. and Mendonça, J. T. 1996 IEEE Trans. Plasma Sci. 24, 2.CrossRefGoogle Scholar
[18]Fisher, D. L. and Tajima, T. 1993 Phys. Rev. Lett. 71, 4338.CrossRefGoogle Scholar
[19]Lampe, D. L., Ott, E. and Walker, J. H. 1978 Phys. Fluids 21, 42.CrossRefGoogle Scholar
[20]Landau, L. D. and Lifsbitz, E. M. 1975 The Classical Theory of Fields, 4th edn. Oxford: Butterworth-Heinemann.Google Scholar
[21]Landau, L. D. and Lifsbitz, E. M. 1975 Electrodynamics of Continuous Media, 4th edn. Oxford: Butterworth-Heinemann.Google Scholar
[22]Yablanovitch, E. 1974 Phys. Rev. A 10, 1888.CrossRefGoogle Scholar
[23]Chen, P. and Tajima, T. 1999 Phys. Rev. Lett. 83, 256.CrossRefGoogle Scholar
[24]Darbinyan, S. M., Ispiryan, K. A., Ispiryan, M. K. and Margaryan, A. T. 1990 JETP 51, 110.Google Scholar
[25]Savage, R. L. Jr, Joshi, C. and Mori, W. B. 1992 Phys. Rev. Lett. 68, 946.CrossRefGoogle Scholar
[26]Dias, J. M., Stenz, C., Lopes, N., Badiche, X., Blasco, F., Dos Santos, A., Silva, L. O., Mysyrowicz, A., Antonetti, A. and Mendonça, J. T. 1997 Phys. Rev. Lett. 78, 4773.CrossRefGoogle Scholar
[27]Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[28]Wilks, S. C., Dawson, J. M., Mori, W. B., Katsouleas, T. and Jones, M. E. 1989 Phys. Rev. Lett. 62, 2600.CrossRefGoogle Scholar
[29]Mendonça, J. T. and Silva, L. O. 1994 Phys. Rev. E 49, 3520.Google Scholar
[30]Silva, L. O. and Mendonça, J. T. 2001 Opt. Commun. 196, 285.CrossRefGoogle Scholar