Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T04:50:19.078Z Has data issue: false hasContentIssue false

On the normal-mode frequency spectrum of kinetic magnetohydrodynamics

Published online by Cambridge University Press:  24 March 2015

J. J. Ramos*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge MA, USA
*
Email address for correspondence: [email protected]

Abstract

This paper presents an explicit proof that, in the kinetic magnetohydrodynamics framework, the squared frequencies of normal-mode perturbations about a static equilibrium are real. This proof is based on a quadratic form for the square-integrable normal-mode eigenfunctions and does not rely on demonstrating operator self-adjointness. The analysis is consistent with the quasineutrality condition without involving any subsidiary constraint to enforce it, and does not require the assumption that all particle orbits be periodic. It applies to Maxwellian equilibria, spatially bounded by either a rigid conducting wall or by a plasma-vacuum interface where the density goes continuously to zero.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T. M. and Lee, Y. C. 1982 Phys. Fluids 25, 132.CrossRefGoogle Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. and Kurlsrud, R. M. 1957 Project Matterhorn Report NYO-7896, Princeton.Google Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. and Kurlsrud, R. M. 1958 Proc. R. Soc. (London) A 244, 17.Google Scholar
Kulsrud, R. 1962a Phys. Fluids 5, 192.CrossRefGoogle Scholar
Kulsrud, R. 1962b Course XXV advanced plasma theory. In: Proc. Int. School of Physics Enrico Fermi, Varenna, Italy, (ed. Rosenbluth, M. N.). New York: North Holland, p. 54.Google Scholar
Kulsrud, R. M. 1983 MHD Description of Plasma. In Handbook of Plasma Physics, Vol. 1 (ed. Rosenbluth, M. N. and Sagdeev, R. Z.). New York: North Holland, p. 115.Google Scholar
Laval, G., Mercier, C. and Pellat, R. M. 1965 Nucl. Fusion 5, 156.CrossRefGoogle Scholar
Ramos, J. J. 2010 Phys. Plasmas 17, 082502.CrossRefGoogle Scholar
Ramos, J. J. 2011 Phys. Plasmas 18, 102506.CrossRefGoogle Scholar
Ramos, J. J. 2015 J. Plasma Phys. 81, 905810111.CrossRefGoogle Scholar
VanDam, J. W., Rosenbluth, M. N. and Lee, Y. C. 1982 Phys. Fluids 25, 1349.CrossRefGoogle Scholar