Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:15:14.570Z Has data issue: false hasContentIssue false

On the existence of compressional MHD oscillations in an inhomogeneous magnetoplasma

Published online by Cambridge University Press:  13 March 2009

Andrew N. Wright
Affiliation:
Astronomy Unit, School of Mathematical Sciences, Queen Mary and Westfield College, London El 4NS, England

Abstract

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, W., White, S. P. & Poulter, E. M. 1985 J. Geophys. Res. 12, 287.Google Scholar
Chiu, Y. T. 1987 J. Geophys. Res. 92 3402.CrossRefGoogle Scholar
Cross, R. C. 1988 a Planet. Space Sci. 36, 1461.CrossRefGoogle Scholar
Cross, R. C. 1988 b Plasma Phys. Contr. Fusion 30, 1213.CrossRefGoogle Scholar
Cummings, W. D., O'Sullivan, R. J. & Coleman, P. J. 1969 J. Geophys. Res. 74, 778.CrossRefGoogle Scholar
Davis, H. F. & Snider, A. D. 1979 Introduction to Vector Analysis. Allyn and Bacon.Google Scholar
Dungey, J. W. 1967 Physics of Geomagnetic Phenomena, vol. 2 (ed. Matsushita, S. & Campbell, W. H.), pp. 913934. AcademieGoogle Scholar
Fejer, J. A. 1981 J. Geophys. Res. 86, 5614.CrossRefGoogle Scholar
Glassmeier, K.-H., Ness, N. F., Acuña, M. H. & Neubauer, F. M. 1989 J. Geophys. Res. 94, 15063.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1986 Planet. Space Sci. 34, 1253.CrossRefGoogle Scholar
Ohtani, S., Miura, A. & Tamo, T. 1989 Planet. Space Soi. 37, 567.CrossRefGoogle Scholar
Radoski, H. R. 1967 J. Geophys. Res. 72, 4026.CrossRefGoogle Scholar
Singer, H. J., Southwood, D. J., Walker, R. J. & Kivelson, M. G. 1981 J. Geophys. Res. 86, 4589.CrossRefGoogle Scholar
Smith, P. R. & Wright, A. N. 1989 Nature 339, 452.CrossRefGoogle Scholar
Southwood, D. J. & Hughes, W. J. 1983 Space Sci. Res. 35, 301.Google Scholar
Walker, A. D. M. 1987 J. Geophys. Res. 92, 10039.CrossRefGoogle Scholar
Wright, A. N. 1990 J. Plasma Phys. 43, 83.CrossRefGoogle Scholar
Wright, A. N. & Smith, P. R. 1990 J. Geophys. Res. 95, 3745.Google Scholar