Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-04T19:46:35.486Z Has data issue: false hasContentIssue false

On the excitation of higher harmonic electrostatic dust cyclotron waves

Published online by Cambridge University Press:  03 April 2013

M. ROSENBERG*
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA ([email protected])

Abstract

In a magnetized plasma containing charged dust whose motion is magnetized, one of the fundamental collective modes that could occur is the electrostatic dust cyclotron (EDC) wave with frequency near the dust cyclotron frequency. The EDC wave propagates nearly perpendicular to the magnetic field with a small parallel wave number, so that it can be driven unstable by ion flow along the magnetic field. Because unstable parallel wavelengths can be relatively large, this places constraints on the plasma device size. In this paper, we use linear kinetic theory to investigate the excitation of higher harmonic EDC waves that have wavelengths smaller than that of the fundamental mode. Collisions of charged particles with neutrals and Coulomb collisions including dust–dust collisions are taken into account. Constraints on possible parameter ranges arising from collisional effects or from requiring stability of other waves are discussed. Numerical results are presented for possible sets of laboratory dusty plasma parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer-Verlag, Ch. 7.3.CrossRefGoogle Scholar
Chang, J.-S. and Spariosu, K. 1993 J. Phys. Soc. Japan 62, 97.CrossRefGoogle Scholar
D'Angelo, N. 1990 Planet. Space. Sci. 38, 1143.CrossRefGoogle Scholar
D'Angelo, N. 1998 Planet. Space Sci. 46, 1671.CrossRefGoogle Scholar
D'Angelo, N. 2002 Planet. Space Sci. 50, 375.CrossRefGoogle Scholar
Davidson, R. C. and Krall, N. A. 1977 Nucl. Fusion 17, 1313.CrossRefGoogle Scholar
Fried, B. D. and Conte, S. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Itikawa, Y. 2006 J. Phys. Chem. Ref. Data 35, 31.CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Phys. Rev. E 70, 056405.CrossRefGoogle Scholar
Kindel, J. M. and Kennel, C. F. 1971 J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York: McGraw-Hill.CrossRefGoogle Scholar
Melrose, D. B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Phelps, A. V. 1991 J. Phys. Chem. Ref. Data 20, 557.CrossRefGoogle Scholar
Porkolab, M. 1968 Phys. Fluids 11, 834.CrossRefGoogle Scholar
Providakes, J., Farley, D. T., Swartz, W. E. and Riggin, D. 1985 J. Geophys. Res. 90, 7513.CrossRefGoogle Scholar
Rasmussen, J. J. and Schrittwieser, R. W. 1991 IEEE Trans. Plasma Sci. 19, 457.CrossRefGoogle Scholar
Rosenberg, M. 2010 Phys. Scripta 82, 035505.CrossRefGoogle Scholar
Rosenberg, M. and Chow, V. W. 1999 J. Plasma Phys. 61, 51.CrossRefGoogle Scholar
Rosenberg, M., Thomas, E. and Merlino, R. L. 2008 Phys. Plasmas 15, 073701.CrossRefGoogle Scholar
Satyanarayana, P., Chaturvedi, P. K., Keskinen, M. J., Huba, J. B. and Ossakow, S. L. 1985 J. Geophys. Res. 90, 12209.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP Publ.CrossRefGoogle Scholar
Shukla, P. K. and Rahman, H. U. 1998 Planet. Space Sci. 46, 541.CrossRefGoogle Scholar
Sorasio, G. and Rosenberg, M. 2001 J. Plasma Phys. 65, 319.CrossRefGoogle Scholar
Suszcynsky, D. M., Cartier, S. L., D'Angelo, N. and Merlino, R. L. 1987 Phys. Fluids 30, 3304.CrossRefGoogle Scholar
Suszcynsky, D. M., Cartier, S. L., Merlino, R. L. and D'Angelo, N. 1986 J. Geophys. Res. 91, 13729.CrossRefGoogle Scholar
Thomas, E. Jr, Fisher, R. and Merlino, R. L. 2007 Phys. Plasmas 14, 123701.CrossRefGoogle Scholar
Thomas, E. Jr, Merlino, R. L. and Rosenberg, M. 2012 Plasma Phys. Control. Fusion 54, 124034.CrossRefGoogle Scholar
Varma, R. K. and Bhadra, D. 1964 Phys. Fluids 7, 1082.CrossRefGoogle Scholar
Williams, J. D. and Thomas, E. Jr, 2006 Phys. Plasmas 13, 063509.CrossRefGoogle Scholar