Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T03:01:21.303Z Has data issue: false hasContentIssue false

On energy confinement following the onset of ‘stiff’ transport

Published online by Cambridge University Press:  06 March 2020

J. W. Connor*
Affiliation:
CCFE, Culham Science Centre, Abingdon, Oxon OX 14 3DB, UK Department of Physics, Imperial College of Science and Technology and Medicine, London SW7 2BZ, UK
R. J. Hastie
Affiliation:
CCFE, Culham Science Centre, Abingdon, Oxon OX 14 3DB, UK
K. Richards
Affiliation:
CCFE, Culham Science Centre, Abingdon, Oxon OX 14 3DB, UK Department of Physics and Astronomy, University College London, Gower Street,London WC1E 6BT, UK
*
Email address for correspondence: [email protected]

Abstract

The dependence of confinement on input power for a tokamak plasma with regions having a stiff temperature profile is explored. The resilience of the confinement of the core energy to increasing power loss by core radiation from impurities in such situations, as it is anticipated will be required in a demonstration fusion reactor (DEMO) design, is examined.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. (Applied Mathematics), chap. 6. National Bureau of Standards.Google Scholar
Buxton, P. F., Connor, J. W., Costley, A. E., Gryaznevich, M. P. & Mcnamara, S. 2019 On the energy confinement in spherical tokamaks: implications for the design of pilot plants and fusion reactors. Plasma Phys. Control. Fusion 61 (3), 035006.CrossRefGoogle Scholar
Chapman, I. T., Simpson, J., Saarelma, S., Kirk, A., O’Gorman, T., Scannell, R.& The Mast Team 2015 The stabilizing effect of core pressure on the edge pedestal in MAST plasmas. Nucl. Fusion 55 (1), 013004.CrossRefGoogle Scholar
Connor, J. W. 1988 Invariance principles and plasma confinement. Plasma Phys. Control. Fusion 30 (6), 619650.CrossRefGoogle Scholar
Connor, J. W., Taylor, J. B. & Turner, M. F. 1984 Ideal MHD ballooning instability and scaling law for confinement. Nucl. Fusion 24 (12), 642647.CrossRefGoogle Scholar
Connor, J. W., Ham, C. J. & Hastie, R. J. 2016 The effect of plasma beta on high-$n$ ballooning stability at low magnetic shear. Plasma Phys. Control. Fusion 58 (8), 085002.CrossRefGoogle Scholar
Dimits, A. M. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969983.CrossRefGoogle Scholar
Doyle, E.J., Houlberg, W.A., Kamada, Y., Mukhovatov, V., Osborne, T.H., Polevoi, A., Bateman, G., Connor, J. W., Cordey, J. G., Fujita, T. et al. 2007 Progress in the ITER Physics Basis, Chapter 2: plasma confinement and transport. Nucl. Fusion 47 (6), S1-S414.Google Scholar
Fable, E., Wenniger, R. & Kemp, R. 2017 Selected transport studies of a tokamak-based DEMO fusion reactor. Nucl. Fusion 57 (2), 022015.CrossRefGoogle Scholar
ITER Physics Expert Groups on Confinement & Confinement Modelling & Database, Plasma Confinement & Transport 1999 ITER Physics Basis, Chapter 2. Nucl. Fusion 39 (12), 21752249.Google Scholar
Kirk, A., O’Gorman, T., Saarelma, S., Scannell, R. et al. 2009 A comparison of H-mode pedestal characteristics in MAST as a function of magnetic configuration and ELM type. Plasma Phys. Control. Fusion 51 (6), 065016.CrossRefGoogle Scholar
Kotschenreuther, M., Valanju, P. M., Mahajan, A. M. & Wiley, J. C. 2007 On heat loading, novel divertors and fusion reactors. Phys. Plasmas 14 (7), 072502.CrossRefGoogle Scholar
Lux, H., Kemp, R., Ward, D. J. & Sertoli, M. 2015 Impurity radiation in DEMO systems modelling. Fusion Engng Des. 101, 4251.CrossRefGoogle Scholar
Lux, H., Kemp, R., Fable, E. & Wenniger, R. 2016 Radiation and confinement in 0D fusion system codes. Plasma Phys. Control. Fusion 58 (7), 075001.CrossRefGoogle Scholar
Maggi, C. F., Frassinetti, L., Horvath, L., Lunniss, A., Saarelma, S., Wilson, H., Flanagan, J., Leyland, M., Lupelli, I., Pamela, S. et al. 2017 Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall. Nucl. Fusion 57, 116012.CrossRefGoogle Scholar
Ochoukov, R., Bobkhov, V., Angioni, C., Bennert, M., Dunne, M., Dux, R., Noterdaeme, J.-M., Odsreiěl, T., Pütternich, T., Reimhold, F.& The Aug Team 2015 Evolution of ELMy H-mode performance in presence of core radiation on ASDEX upgrade. In Proc. 42nd EPS Conference on Plasma Physics, European Physical Society, P1.131.Google Scholar
Suttrop, W., Kaufmann, M., De Blanck, H., Brüsebauer, B. et al. 1997 Identification of plasma-edge-related operational regime boundaries and the effect of edge instability on confinement in ASDEX Upgrade. Plasma Phys. Control. Fusion 39 (12), 20512066.CrossRefGoogle Scholar
Ward, D. J. 2010 The physics of DEMO. Plasma Phys. Control. Fusion 52 (12), 124033.CrossRefGoogle Scholar
Zohm, H., Träuble, F., Biel, W., Fable, E., Kemp, R., Lux, H., Siccinio, M. & Wenniger, R. 2017 A stepladder approach to a tokamak fusion power plant. Nucl. Fusion 57 (8), 086002.CrossRefGoogle Scholar
Zohm, H. 2019a On the use of high magnetic field in reactor grade tokamaks. J. Fusion Energy 38, 310.CrossRefGoogle Scholar
Zohm, H. 2019b On the size of fusion power plants. Phil. Trans. R. Soc. Lond. A 377 (2141), 20170437.Google Scholar