Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T21:23:30.103Z Has data issue: false hasContentIssue false

Oblique stability of circularly polarized MHD waves

Published online by Cambridge University Press:  13 March 2009

E. Mjølhus
Affiliation:
Institute of Mathematical and Physical Sciences, University of Tromsø, P.O. Box 953, N-9001 Tromsø, Norway
T. Hada
Affiliation:
University of California, Los Angeles, U.S.A.

Abstract

The stability of finite-amplitude weakly dispersive circularly polarized MHD wave trains with respect to oblique modulations is investigated. The mathematical model is a multi-dimensional extension of the DNLS equation. We have found that the right-hand-polarized wave, which is stable with respect to parallel modulations, is unstable with respect to certain oblique modulations for most primary wavenumbers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feeraro, V. C. A. 1955 Proc. R. Soc. Lond, A 233, 310.Google Scholar
Flå, T., Mjølhus, E. & Wyller, J. 1989 Physica Scripta, 40, 219.Google Scholar
Hada, T., Kennel, C. F. & Buti, B. 1989 J. Geophys. Res. 94A, 65.CrossRefGoogle Scholar
Hasegawa, A. 1971 Phys. Fluids, 15, 870.CrossRefGoogle Scholar
Kadomtsev, B. B. & Petviashvili, V. I. 1970 Dokl. Akad. Nauk SSSR, 192, 753.Google Scholar
Karpman, V. I. & Kadomtsev, B. B. 1971 Soviet Phys. Usp. 14, 40.Google Scholar
Kennel, C. F., Buti, B., Hada, T. & Pellat, R. 1988 Phys. Fluids, 31, 1949Google Scholar
Khanna, M. & Rajaram, R. 1982 J. Plasma Phys. 28, 459.Google Scholar
Lighthill, M. J. 1965 J. Inst. Maths Appl. 1, 269.CrossRefGoogle Scholar
Longtin, M. & Sonnerup, B. U. Ö. 1986 J. Geophys. Res. 91, 6816.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, K. & Takeda, S. 1976 J. Phys. Soc. Japan, 41, 265.CrossRefGoogle Scholar
Mjølhus, E. 1974 Department of Applied Mathematics, University of Bergen, Report 48.Google Scholar
Mjølhus, E. 1976 J. Plasma Phys. 16, 321.CrossRefGoogle Scholar
Mjølhus, E. 1989 Physica Scripta, 40, 227.CrossRefGoogle Scholar
Mjølhus, E. & Wyller, J. 1986 Physica Scripta, 33, 442.CrossRefGoogle Scholar
Mjølhus, E. & Wyller, J. 1988 J. Plasma Phys. 40, 299.CrossRefGoogle Scholar
Rogister, A. 1971 Phys. Fluids 14, 2733.CrossRefGoogle Scholar
Ruderman, M. S. 1987 Fluid Dyn. 22, 299 (Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, 2, 159).CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1982 J. Plasma Phys. 27, 193.Google Scholar
Taniuti, T. & Washimi, H. 1968 Phys. Rev. Lett. 21, 209.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Whitham, G. B. 1965 a Proc. R. Soc. Lond. A 283, 238.Google Scholar
Whitham, G. B. 1965 b J. Fluid Mech. 22, 273.Google Scholar