Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T18:14:33.405Z Has data issue: false hasContentIssue false

Numerical model of plasma double layers using the Vlasov equation

Published online by Cambridge University Press:  13 March 2009

Lloyd E. Johnson
Affiliation:
R. and D. Associates, P.O. Box 9695, Marina del Roy, California 90291

Abstract

The one-dimensional plasma double layer is modelled by numerically integrating the time-dependent Vlasov and Poisson equations. A constant magnetic field at an arbitrary angle with respect to the layer is included. The model shows that such a plasma region can generate as well as reflect Langmuir waves and shows how RF emission may arise. An axial magnetic field does not inhibit the formation of a double layer, although a non-axial field may do so.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Block, L. P. 1972 Cosmic Electrodynamics, 3, 349.Google Scholar
Carlqvist, P. 1972 Cosmic Electrodynamics, 3, 377.Google Scholar
Cheng, C. Z. & Knorr, G. 1976 J. Comp. Phys. 22, 330.CrossRefGoogle Scholar
Coakley, P., Hershkowitz, N., Hubbard, R. F. & Joyce, C. 1978 Phys. Rev. Lett. 40, 230.CrossRefGoogle Scholar
Coakley, P. & Herskowitz, N. 1979 Phys. Fluids, 22, 1171.CrossRefGoogle Scholar
Coakley, P., Johnson, L. E. & Hershkowitz, N. 1979 Phys. Lett. 70A, 425.CrossRefGoogle Scholar
Fälthammar, C.-G. 1978 Astrophys. Space Sci. 55, 179.CrossRefGoogle Scholar
Goertz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Joyce, G. & Hubbard, R. F. 1978 J. Psma Phys. 20, 391.Google Scholar
Knorr, G. & Goertz, C. K. 1974 Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
Knorr, G., Joyce, G. & Marcus, A. 1978 Report No. 78−52. University of Iowa.Google Scholar
Knorr, G. & Mond, M. 1980 J. Comp. Phys. In press.Google Scholar
Langmuir, I. 1929 Phys. Rev. 33, 954.Google Scholar
Levine, J. S., Crawford, F. W. & Ilí, D. B. 1978 Phys. Lett. 65 A, 27.CrossRefGoogle Scholar
Quon, B. H. & Wong, A. Y. 1976 Phys. Rev. Lett. 37, 1393.CrossRefGoogle Scholar
Shawhan, S. D., Fälthammar, C-C. & Block, L. P. 1978 J. Geophys. Res. 83, 1049.CrossRefGoogle Scholar
Singh, N. 1980 Plasma Phys. 22, 1.CrossRefGoogle Scholar
Smith, R. A. & Goertz, C. K. 1978 J. Geophys. Res. 83, 2617.CrossRefGoogle Scholar
Swiet, D. W. 1975 J. Geophys. Res. 80, 2096.Google Scholar
Torven, S. & Andersson, D. 1979 J. Phy. D. 12, 717.Google Scholar
Torven, S. 1979 Wave Instabilities in Space Plasnzas, Astrophysics and Space Science Book Series (ed. Palmadesso, P. J. & Papadopoulos, K.), p. 109. Reidel.Google Scholar
Yanemnko, N. N. 1971 The Method of Fractional Steps, Ch. 3 and 10. Springer.CrossRefGoogle Scholar