Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T15:54:23.607Z Has data issue: false hasContentIssue false

Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid

Published online by Cambridge University Press:  13 July 2015

Francesco Taccogna*
Affiliation:
CNR-NanoTec, via Amendola 122/D, Bari 70126, Italy
*
Email address for correspondence: [email protected]

Abstract

Modelling the nucleation and growth of nanoparticles in liquid-phase laser ablation is very important to optimize and control the size and the structure of nanoparticles. However, the detailed formation process of nanoparticles after laser ablation is still unclear. In the present study we investigated for the first time the kinetic growth of nanoparticles synthesized by laser ablation in water, emphasizing the leading role of the plasma medium and in particular the electrostatic agglomeration due to the charging of the nanoparticle in the plasma plume. The importance of the confining role of the liquid medium on the plasma plume is revealed, showing how an isothermal expansion is able to produce smaller nanoparticles compared to an adiabatic cooling.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amendola, V. & Meneghetti, M. 2013 What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 11, 30273046.CrossRefGoogle Scholar
Coppins, M. 2010 Electrostatic breakup in a misty plasma. Phys. Rev. Lett. 104, 065003.Google Scholar
Cui, C. & Goree, J. 1994 Fluctuations of the charge on a dust grain in a plasma. IEEE Trans. Plasma Sci. 22 (2), 151158.Google Scholar
De Giacomo, A., Dell’Aglio, M., Santagat, A., Gaudiuso, R., De Pascale, O., Wagener, P., Messina, G. C., Compagnini, G. & Barcikowski, S. 2013 Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 15, 30833092.CrossRefGoogle ScholarPubMed
Debenedetti, P. G. 1996 Metastable Liquids. Concepts and Principles. Princeton University Press.Google Scholar
Dell’Aglio, M., Gaudiuso, R., De Pascale, O. & De Giacomo, A. 2015 Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 49.CrossRefGoogle Scholar
Girshick, S. L. 1994 Particle nucleation and growth in thermal plasmas. Plasma Sources Sci. Technol. 3, 388394.CrossRefGoogle Scholar
Gouriet, K. L., Sentis, M. & Itina, T. E. 2009 Molecular dynamics study of nanoparticle evaporation and condensation in a gas. J. Phys. Chem. C 113, 1846218467.Google Scholar
Harilal, S. S., Miloshevsky, G. V., Diwakar, P. K., LaHaye, N. L. & Hassanein, A. 2012 Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19, 083504.Google Scholar
Itina, T. E., Gouriet, K. L., Zhigilei, V., Noel, S., Hermann, J. & Sentis, M. 2007 Mechanisms of small clusters production by short and ultra-short laser ablation. Appl. Surf. Sci. 253, 76567661.CrossRefGoogle Scholar
Itina, T. E., Hermann, J., Delaporte, P. & Sentis, M. 2002 Laser-generated plasma plume expansion: combined continuous-microscopic modeling. Phys. Rev. E 66, 066406.Google ScholarPubMed
Itina, T. E., Sentis, M. & Marine, W. 2006 Synthesis of nanoclusters by nanosecond laser ablation: direct simulation Monte Carlo modelling. Appl. Surf. Sci. 252, 44334438.Google Scholar
Jansen, R., Wysong, I., Gimelshein, S., Zeifman, M. & Buck, U. 2010 Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions. J. Chem. Phys. 132, 244105.Google Scholar
Keesee, R. G. 1989 Nucleation and particle formation in the upper atmosphere. J. Geophys. Res. 94 (D12), 1468314692.CrossRefGoogle Scholar
Kundrapu, M., Li, J., Shashurin, A. & Keidar, M. 2012 A model of carbon nanotube synthesis in arc discharge plasmas. J. Phys. D: Appl. Phys. 45, 315305.Google Scholar
Lampe, M. 2001 Limits of validity for orbital-motion-limited theory for a small floating collector. J. Plasma Phys. 65 (3), 171180.CrossRefGoogle Scholar
Reiss, H., Kegel, W. K. & Katz, J. L. 1997 Resolution of the problems of replacement free energy, 1ys, and internal consistency in nucleation theory by consideration of the length scale for mixing entropy. Phys. Rev. Lett. 78 (23), 45064509.CrossRefGoogle Scholar
Russell, K. C. 1969 Nucleation on gaseous ions. J. Chem. Phys. 50 (4), 18091816.CrossRefGoogle Scholar
Sasaki, K. & Takada, N. 2010 Liquid-phase laser ablation. Pure Appl. Chem. 382 (6), 30833092.Google Scholar
Soliman, W., Takada, N. & Sasaki, K. 2010 Growth processes of nanoparticles in liquid-phase laser ablation studied by laser-light scattering. Appl. Phys. Express 3, 035201.CrossRefGoogle Scholar
Taccogna, F. 2012 Dust in plasma i. Particle size and ion-neutral collision effects. Contrib. Plasma Phys. 52 (9), 744755.CrossRefGoogle Scholar
Taccogna, F., Longo, S. & Capitelli, M. 2003 A particle-in-cell/Monte Carlo model of the $\text{Ar}^{+}$ ion collection in He gas by a cylindrical Langmuir probe in the transition regime. Eur. Phys. J. Appl. Phys. 22 (1), 2939.Google Scholar
Taccogna, F., Longo, S. & Capitelli, M. 2004 PIC model of the ion collection by a Langmuir probe. Contrib. Plasma Phys. 44 (7–8), 594600.CrossRefGoogle Scholar
Taccogna, F. & Mizzi, G. 2014 Dust in plasma ii. Effects of secondary electrons: ionization and surface emission. Contr. Plasma Phys. 54 (10), 877888.Google Scholar
Tillack, S. M., Blair, D. W. & Harilal, S. S. 2004 The effect of ionization on cluster formation in laser ablation plumes. Nanotechnology 15, 390403.Google Scholar
Wang, C. X. & Yang, G. W. 2012 Thermodynamic and kinetic approaches of diamond and related nanomaterials formed by laser ablation in liquid. In Laser Ablation in Liquids. Principles and Applications in the Preparation of Nanomaterials (ed. Yang, G.), pp. 157206. Pan Stanford Publishing.Google Scholar