Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-04T19:44:52.859Z Has data issue: false hasContentIssue false

Non-planar dust-acoustic solitary waves and double layers in a four-component dusty plasma with super thermal electrons

Published online by Cambridge University Press:  18 March 2013

PRASANTA CHATTERJEE
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, INDIA
DEB KUMAR GHOSH
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, INDIA
UDAY NARAYAN GHOSH
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, INDIA
BISWAJIT SAHU
Affiliation:
Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126, [email protected]

Abstract

The properties of non-planar (cylindrical and spherical) dust-acoustic solitary waves (DA SWs) and double layers (DLs) in an unmagnetised collisionless four-component dusty plasma, whose constituents are positively and negatively charged dust grains, super thermal electrons and Boltzmannian ions are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation and solve it numerically to study the nonlinear features of the finite amplitude non-planar DA Gardner solitons (GSs) and DLs, which are shown to exist for κ around its critical value κc (where, κ is the super thermal parameter and κc is the value of κ corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation). It is seen that the properties of non-planar DA SWs and DLs are significantly differs in non-planar geometry from planar geometry. It is also found that the magnitude of the amplitude of positive and negative GSs decreases with κ and the width of positive and negative GSs increases with the increase of κ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-shrauner, B., Asbridge, J. R., Bame, S. J. and Feldman, W. C. 1979 J. Geophys. Res. 84, 553.CrossRefGoogle Scholar
Alinejad, H. 2012 Astrophys. Space Sci. 339, 249.CrossRefGoogle Scholar
Armstrong, T. P., Paonessa, M. T., Bell, E. V. and Krimigis, S. M. 1983 J. Geophys. Res. 88, 8893.CrossRefGoogle Scholar
Cattaert, T., Verheest, F. and Hellberg, M. A. 2005 Phys. Plasmas 12, 042 901.Google Scholar
Chatterjee, P. and Ghosh, U. N. 2011 Euro. Phys. J. D 64, 413.Google Scholar
Chow, V. W., Mendis, D. A. and Rosenberg, M. 1993 J. Geophys. Res. 98, 19 065.CrossRefGoogle Scholar
Chu, J. H., Du, J. B. and Lin, I. 1994 J. Phys. D 27, 296.Google Scholar
Das, B. and Chatterjee, P. 2009 Phys. Lett. A 373, 1144.CrossRefGoogle Scholar
Formisano, V., Moreno, G. and Palmiotto, F. 1973 J. Geophys. Res. 78, 3714.CrossRefGoogle Scholar
Ghosh, S. and Bharuthram, R. 2008 Astrophys. Space Sci. 314, 121.CrossRefGoogle Scholar
Ghosh, D. K., Chatterjee, P. and Sahu, B. 2012 Astrophys. Space Sci. DOI 10.1007/s10 509-012-1112-8.Google Scholar
Ghosh, S., Sarkar, S., Khan, M. and Gupta, M. R. 2001 Phys. Scr. 63, 395.CrossRefGoogle Scholar
Goertz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
Gupta, M. R., Sarkar, S., Ghosh, S., Debnath, M. and Khan, M. 2001 Phys. Rev. E 63, 046 406.Google Scholar
Havnes, O.et al. 1996 J. Geophys. Res. 101, 10 839.CrossRefGoogle Scholar
Hershkowitz, N. and Romesser, T. 1974 Phys. Rev. Lett. 32, 581.CrossRefGoogle Scholar
Horanyi, M. and Mendis, D. A. 1986 Astrophys. J. 307, 800.CrossRefGoogle Scholar
Horanyi, M., Morfill, G. E. and Grun, E. 1993 Nature (London) 363, 144.CrossRefGoogle Scholar
Hossain, M. M., Mamun, A. A. and Ashrafi, K. S. 2011 Phys. Plasmas 18, 103 704.CrossRefGoogle Scholar
Jung, Y. D. and Hong, W. 2000 J. Plasma Phys. 63, 79.CrossRefGoogle Scholar
Kim, T. H. and Kim, K. Y. 2001 Phys. Lett. A 286, 180.CrossRefGoogle Scholar
Law, D. A., Steet, W. H., Mannaratine, B. and Allen, J. E. 1998 Phys. Rev. Lett. 80, 4189.CrossRefGoogle Scholar
Lazar, M., Schlickeiser, R., Poedts, S. and Tautz, R. C. 2008 Mon. Not. R. Astron. Soc. 168, 390.Google Scholar
Lee, N. C. 2009 Phys. Plasmas 16, 042 316.Google Scholar
Leubner, M. P. 1982 J. Geophys. Res. 87, 6335.CrossRefGoogle Scholar
Leubner, M. P. 2004 Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Lin, M. M. and Duan, W. S. 2007 Phys. Scr. 76, 320.CrossRefGoogle Scholar
Liu, S. Q. and Chen, H. 2012 Astrophys. Space Sci. 339, 269.CrossRefGoogle Scholar
Lui, A. T. Y. and Krimigis, S. M. 1987 Geophys. Res. Lett. 8, 527.CrossRefGoogle Scholar
Mace, R. L., Helberg, M. A. and Treumann, R. A. 1998 J. Plasma Phys. 59, 393.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2001 Phys. Lett. A 290, 173.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002 Phys. Plasmas 9, 1468.CrossRefGoogle Scholar
Mannan, A. and Mamun, A. A. 2011 Phys. Rev. E 84, 026 408.Google Scholar
Marsch, E., Muhlhauser, K. H., Schwenn, R., Rosenbauer, H., Pillip, W. and Neubauer, F. M. 1982 J. Geophys. Res. 87, 52.CrossRefGoogle Scholar
Maxon, S. and Viecelli, J. 1974 Phys. Rev. Lett. 32, 4.CrossRefGoogle Scholar
Mayout, S. and Tribeche, M. 2011 Astrophysics. Space Sci. 335, 443.CrossRefGoogle Scholar
Melands, F. 1996 Phys. Plasmas 27, 3890.CrossRefGoogle Scholar
Mendis, D. A. and Horanyi, M. 1991 In Cometary Plasma Processes Monograph, Ser. No. 61, American Geophysical Union, Wasington, DC 17-25.Google Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Merrison, J.et al. 2004 Planet. Space Sci. 52, 279.CrossRefGoogle Scholar
Nejoh, Y. 1992 Phys. Fluids B 4, 2830.CrossRefGoogle Scholar
Northrop, T. G. 1992 Phys. Scr. 75, 475.CrossRefGoogle Scholar
Pakzad, H. R. 2009 Astrophysics. Space Sci. 324, 41.CrossRefGoogle Scholar
Pakzad, H. R. 2011 Astrophys. Space Sci. 331, 169.CrossRefGoogle Scholar
Pakzad, H. R. 2012 Astrophysics. Space Sci. 337, 217.CrossRefGoogle Scholar
Raadu, M. A. 1989 Phys. Rep. 178, 25.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Sahu, B. and Roychoudhury, R. 2004 Phys. Plasmas 11, 104 871.Google Scholar
Scudder, J. D., Sittler, E. C. and Bridge, H. S. 1981 J. Geophys. Res. 86, 8157.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
Tribeche, M. and Boubakour, N. 2009 Phys. Plasmas 16, 084 502.Google Scholar
Tribeche, M., Younsi, S. and Zerguini, T. H. 2012 Astrophys. Space Sci. 339, 243.CrossRefGoogle Scholar
Trigwell, S., Grable, N., Yurreri, C. U., Sharma, R. and Mazumder, M. K. 2003 IEEE Trans. Ind. Appl. 39, 79.CrossRefGoogle Scholar
Vassilev, V. M., Djondjorov, P. A., Hadzhilazov, M. T. and Mladenov, I. M. 2011 AIP Conf. Proc. 1404, 86.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar
Verheest, F. 1989 J. Plasma Phys. 42, 395.CrossRefGoogle Scholar
Verheest, F. 2001 Waves in Dusty Space Plasmas. London: Kluwer academic publishers.Google Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Wazwaz, A. M. 2007 Commun. Nonlin. Sci. Numer. Simul. 12, 1395.CrossRefGoogle Scholar
Wazwaz, A. M. 2009 Partial Differential Equations and Solitary Waves Theory. Springer: Higher Education Press.CrossRefGoogle Scholar
Xue, J. K. 2003 Phys. Plasmas 10, 3430.CrossRefGoogle Scholar
Xue, J. K. and Lang, H. 2003 Phys. Plasmas 10, 339.Google Scholar
Wazwaz, A. M. 2007 Commun. Nonlinear. Sci. Numer. Simul. 12, 1395.CrossRefGoogle Scholar
Yan, Z. 2008 Phys. Lett. A 372, 969.CrossRefGoogle Scholar
Zhao, H., Castle, G. S. P. and Inculet, I. I. 2002 J. Electrost. 55, 261.CrossRefGoogle Scholar