Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T03:03:16.609Z Has data issue: false hasContentIssue false

Non-planar dust-acoustic Gardner solitons with two-ion-temperature in a dusty plasma

Published online by Cambridge University Press:  02 December 2011

M. ASADUZZAMAN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])

Abstract

The nonlinear propagation characteristics of Gardner solitons (GSs) in a non-planar (cylindrical and spherical) two-ion-temperature unmagnetized dusty plasma, whose constituents are inertial negative dust, Boltzmann electrons and ions with two distinctive temperatures, are investigated by deriving the modified Gardner (mG) equation. The standard reductive perturbation method is employed to derive the mG equation. The basic features of non-planar dust-acoustic (DA) GSs are analyzed. It has been found that the basic characteristics of GSs, which are shown to exist for the values of ni10/Zdnd0 around 0.311, for ni20/Zdnd0 = 0.5, Ti1/Te = 0.07, and Ti1/Ti2 = 0.05 [where ni10 (ni20) is the lower (higher) temperature ion number density at equilibrium, Ti1 (Ti2) is the lower (higher) temperature of ions, Te is the electron temperature, Zd is the number of electrons residing on the dust grain surface, and nd0 is the equilibrium dust number density] are different from those of Korteweg-de Vries solitons, which do not exist around ni10/Zdnd0 ≃ 0.311. It has been found that the propagation characteristics of non-planar DA GSs significantly differ from those of planar ones.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandyopadhyay, P., Prasad, G., Sen, A. and Kaw, P. K. 2008 Phys. Rev. Lett. 101, 065006.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
D'Angelo, N. 1995 J. Phys. D 28, 1009.CrossRefGoogle Scholar
Fortov, V. E., Petrov, O. F., Molotkov, V. I., Poustylnik, M. Y., Torchinsky, V. M., Khrapak, A. G. and Chernyshev, A. V. 2004 Phys. Rev. E 69, 016402.CrossRefGoogle Scholar
Franz, J. R., Kinter, P. M. and Pickett, J. S. 1998 Geophys. Res. Lett. 25, 2041.CrossRefGoogle Scholar
Gill, T. S., Kaur, H. and Saini, N. S. 2004 J. Plasma Phys. 70, 481.CrossRefGoogle Scholar
Goertz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
Ishihara, O. 2007 J. Phys. D 40, R121.CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A. V., Yaroshenko, V. V. and Morfill, G. E. 2009 Phys. Rev. Lett. 102, 245004.CrossRefGoogle Scholar
Lee, N. C. 2009 Phys. Plasmas 16, 042316.CrossRefGoogle Scholar
Liao, C.-T., Teng, L.-W., Tsai, C.-Y., Io, C.-W. and Lin, I. 2008 Phys. Rev. Lett. 100, 185004.CrossRefGoogle Scholar
Ma, J. X. and Liu, J. 1997 Phys. Plasmas 4, 253.CrossRefGoogle Scholar
Mamun, A. A. 1999 Astrophys. Space Sci. 268, 443.CrossRefGoogle Scholar
Mamun, A. A. 2008 Phys. Lett. A 372, 884.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.CrossRefGoogle Scholar
Mamun, A. A., Eliasson, B. and Shukla, P. K. 2004 Phys. Lett. A 332, 412.CrossRefGoogle Scholar
Mamun, A. A., Jahan, N. and Shukla, P. K. 2008 J. Plasma Phys. 75, 413.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2001 Phys. Lett. A 290, 173.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009 New J. Phys. 11, 103022.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Mendonca, J. T., Rao, N. N. and Guerreiro, A. 2001 Europhys. Lett. 54, 741.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57, 32.CrossRefGoogle Scholar
Mirza, A. M., Mahmood, S., Jehan, N. and Ali, N. 2007 Phys. Scr. 75, 755.CrossRefGoogle Scholar
Pieper, J. B. and Goree, J. 1996 Phys. Rev. Lett. 77, 3137.CrossRefGoogle Scholar
Prudskikh, V. V. 2009 Plasma Phys. Rep. 1, 84.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990, Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Sheridan, T. E., Nosenko, V. and Goree, J. 2008 Phys. Plasmas 15, 073703.CrossRefGoogle Scholar
Shukla, P. K. 2003 Phys. Plasmas 10, 1619.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 23.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 17.1.Google Scholar
Tagare, S. G. 1997 Phys. Plasmas 4, 3167.CrossRefGoogle Scholar
Thomas, E. Jr., Fisher, R. and Merlino, R. L. 2007 Phys. Plasmas 14, 123701.CrossRefGoogle Scholar
Tsai, C.-Y., Teng, L.-W., Chang, M.-C., Tseng, Y.-P. and Lin, I. 2009 Phys. Plasmas 16, 063702.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Xie, B., He, K. and Huang, Z. 1999 Phys. Plasmas 6, 3808.CrossRefGoogle Scholar
Xue, J.-K. 2004 Phys. Plasmas 11, 1860.CrossRefGoogle Scholar
Yun, G. X., Mai, L. M. and Shan, D. W. 2008 Commun. Theor. Phys. 49, 482.Google Scholar