Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T20:40:53.579Z Has data issue: false hasContentIssue false

Nonlinear wavy phenomena into plasma: some cases of stabilization and control of chaotic behaviors

Published online by Cambridge University Press:  01 March 2011

CONSTANTINE L. XAPLANTERIS
Affiliation:
Plasma Physics Lab, IMS, NCSR, ‘Demokritos’, Athens, Greece Hellenic Military Academy, Vari Attica, Greece ([email protected])
ELENI FILIPPAKI
Affiliation:
Plasma Physics Lab, IMS, NCSR, ‘Demokritos’, Athens, Greece

Abstract

Stabilities, instabilities and turbulences have always appeared into a cylindrical magnetized argon plasma. These phenomena are caused by linear or nonlinear dynamics and are interpreted with the linear or nonlinear theory accordingly. In this paper, an experimental study accompanied by theoretical justification and based on the wave–wave interaction has been made; an azimuthally moved driving wave is enforced in a very simple way. The turbulence stabilization, the wave coupling, the instability synchronization and other wavy interactions, which are caused by using an external spatiotemporal electric signal, are presented. The research of the wavy subjects continuing in our laboratory aspires to comprehend the plasma chaotic behavior and take a step into suppressing the unstable inclination.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Krall, N. and Trivelpiece, A. 1973 Principles of Plasma Physics. Tokyo: McGraw-Hill Kogakusha.CrossRefGoogle Scholar
[2]Wesson, J. 1997 Tokamaks, 2nd edn.Oxford, UK: Clarendon Press.Google Scholar
[3]Lieberman, M. and Lichtenberg, A. 1994 Principles of Plasma Discharges and Materias Processing. New York: John Wiley and Sons.Google Scholar
[4]D'Angelo, N. and Rynn, N. 1961 Phys. Fluids 4, 275.CrossRefGoogle Scholar
[5]D'Angelo, N. and Rynn, N. 1961 Phys. Fluids 4, 1054.CrossRefGoogle Scholar
[6]Hendel, H. W., Coppi, B., Perkins, F. and Politzer, P. A. 1967 Phys. Rev. Lett. 18, 439.CrossRefGoogle Scholar
[7]Ellis, R., Marden-Marshall, E. and Majeski, R. 1980 Plasma Phys. 22, 113.CrossRefGoogle Scholar
[8]Marden-Marshall, E., Ellis, R. F. and Walsh, J. E. 1986 Plasma Phys. 28 (9B), 1461.Google Scholar
[9]Anastassiades, A. and Xaplanteris, C. L. 1983 J. Phys.Soc. Japan 52, 492.CrossRefGoogle Scholar
[10]Xaplanteris, C. L. 2009 J. Plasma Phys. 75 (3), 395406.CrossRefGoogle Scholar
[11]Sen, A. K. 2000 Phys. Plasmas 7, 1759.CrossRefGoogle Scholar
[12]Weltmann, K. D., Koepke, M. E. and Selcher, C. A. 2000 Phys. Rev. E 62, 2773.Google Scholar
[13]Pierre, T., Bonhomme, G. and Atipo, A. 1996 Phys. Rev. Lett. 76, 2290.CrossRefGoogle Scholar
[14]Satya, Y. S. and Kaw, R. K. 1973 Phys. Rev. Lett. 31, 1453.CrossRefGoogle Scholar
[15]Lakhina, G. S. and Shukla, P. K. 1987 Astrophys. Space Sci. 139, 275279.CrossRefGoogle Scholar
[16]Vranjes, J., Saleem, H. and Poedts, S. 2004 Phys. Rev. E 69, 056404.Google Scholar
[17]Block, D., Piel, A., Schroder, Ch. and Klinger, T. 2001 Phys. Rev. E 63, 056401.Google Scholar
[18]Koepke, M. E., Klinger, T., Seddighi, F. and Piel, A. 1996 Phys. Plasmas 3, 4421.CrossRefGoogle Scholar
[19]Klinger, T. 1998 Control of Chaos in Plasmas. In: Handbook of Chaos Control (ed. Schuster, H. G.). Weinheim, Germany: Wiley-VCH, ch. 20, pp. 513562.Google Scholar
[20]Vranjes, J. and Poedts, S. 2004 Plasma Phys. 11 (3), 891897.CrossRefGoogle Scholar
[21]Xaplanteris, C. L. 1986 Astrophys. Space Sci. 136, 171181.CrossRefGoogle Scholar
[22]Xaplanteris, C. L. 2011 J. Plasma Phys. 77, 1529.CrossRefGoogle Scholar
[23]Spitzer, L. 1967 Physics of Fully Ionized Gases, 2nd edn.New York: John Wiley & Sons.Google Scholar