Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:45:19.829Z Has data issue: false hasContentIssue false

Nonlinear wave interactions in two-electron-temperature plasmas

Published online by Cambridge University Press:  13 March 2009

A. Hanssen
Affiliation:
Institute of Theoretical Astrophysics, University of Oslo, Boks 1029 Blindern, N-0315 Oslo, Norway
H. L. Pécseli
Affiliation:
Institute of Physics, University of Oslo, Boks 1048 Blindern, N-0316 Oslo, Norway
L. Stenflo
Affiliation:
Department of Plasma Physics, Umeå University, S-901 87 Umeå, Sweden
J. Trulsen
Affiliation:
Institute of Theoretical Astrophysics, University of Oslo, Boks 1029 Blindern, N-0315 Oslo, Norway

Abstract

Dynamical equations are derived for the evolution of weakly nonlinear electron plasma waves when the electron distributions are characterized by more than one temperature component. The presence of electron-acoustic modes in multi- temperature plasmas opens a new decay channel. By considering an explicit example, it is demonstrated that these distributions imply significant modifications of the standard models for the decay spectrum of electron plasma waves. In particular, long-wavelength Langmuir waves can decay to shorter wavelengths. The results can have implications for ionospheric heating experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buti, B. & Yu, M. Y. 1981 J. Plasma Phys. 26, 309.CrossRefGoogle Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, O., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
DuBois, D. F., Hanssen, A., Rose, H. A. & Russell, D. 1993 J. Geophys. Res. 98, 17543.CrossRefGoogle Scholar
Dysthe, K. B. & Pécseli, H. L. 1977 Plasma Phys. 19, 931.CrossRefGoogle Scholar
Gary, S. P. & Tokar, R. L. 1985 Phys. Fluids 28, 2439.CrossRefGoogle Scholar
Gavrilov, E. M., Shvets, V. F. & Rubenchik, A. M. 1992 Phys. Fluids B 4, 1966.Google Scholar
Gorbunov, L. M. 1969 Soviet Phys. JETP 28, 1220.Google Scholar
Guha, S. & Asthana, M. 1989 J. Plasma Phys. 42, 241.CrossRefGoogle Scholar
Hanssen, A., Mjølhus, E., DuBois, D. F. & Rose, H. A. 1992 J. Geophys. Res. 97, 12073.Google Scholar
Ikezawa, S. & Nakamura, Y. 1980 J. Phys. Soc. Japan 48, 2091.CrossRefGoogle Scholar
Intrator, T., Chan, C., Hershkowitz, N. & Dibold, D. 1984 Phys. Rev. Lett. 53, 1233.CrossRefGoogle Scholar
Isham, B., Kofman, W., Hagfors, T., Nordling, J., Thidé, B., LaHoz, C. & Stubbe, P. 1990 Radio Sci. 25, 251.Google Scholar
Kawai, Y., Nakamura, Y., Itoh, T., Hara, T. & Kawabe, T. 1975 J. Phys. Soc. Japan 38, 876.Google Scholar
Khirseli, E. M. & Tsintsadze, N. L. 1980 Soviet J. Plasma Phys. 6, 595.Google Scholar
Liu, C. S. & Kaw, P. K. 1976 Adv. Plasma Phys. 6, 83.Google Scholar
Pécseli, H. L. 1985 IEEE Trans. Plasma. Sci. 13, 53.CrossRefGoogle Scholar
Sharma, S. K. & Sudarshan, A. 1991 J. Plasma Phys. 46, 99.CrossRefGoogle Scholar
Stenflo, L. 1990 Phys. Scripta T 30, 166.Google Scholar
Trequier, J. P. & Henry, B. 1975 J. Plasma Phys. 13, 193.Google Scholar
Watanabe, K. & Taniuti, T., 1977 J. Phys. Soc. Japan 43, 1819.Google Scholar
Yu, M. Y. & Shukla, P. K. 1983 J. Plasma Phys. 29, 409.Google Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP 35, 908.Google Scholar