Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:09:05.842Z Has data issue: false hasContentIssue false

Nonlinear third harmonic radiation in thermal free electron laser with modified wiggler

Published online by Cambridge University Press:  20 January 2015

F. Bazouband*
Affiliation:
Department of Physics, Fasa University, Post code 74617-81189, Fasa, Iran Department of Physics, Amirkabir University of Technology, Post code 15875-4413, Tehran, Iran
B. Maraghechi
Affiliation:
Department of Physics, Amirkabir University of Technology, Post code 15875-4413, Tehran, Iran
*
Email address for correspondence: [email protected]

Abstract

Simulation of free electron laser (FEL) with modified wiggler consisting of a conventional planar wiggler with third harmonic field component is presented. A set of self consistent nonlinear differential equations is derived and solved numerically by Runge–Kutta method. The optimum amplitudes of fundamental and third harmonic wiggler filed are obtained to increase the third harmonic radiation in comparison with conventional wiggler and also to have lower electron beam energy compared to conventional wiggler with the same wavelength. For the thermal effect the axial energy spread of electron beam, without any spread in the transverse velocity, is assumed. A peculiar region is found in which there is a sharp increase of the radiation amplitude. Thermal effect of the electron beam was found to be irregular in this peculiar region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asakawa, M.et al. 1995 Development of a modified wiggler for higher harmonic lasing of a free-electron laser. Nucl. Instrum. Methods Phys. Res. A 358, 399402.CrossRefGoogle Scholar
Asakawa, M., Mima, K., Nakai, S., Imasaki, K. and Yamanaka, C. 1992 Higher harmonic generation in a modified wiggler magnetic field. Nucl. Instrum. Methods Phys. Res. A 318, 538545.CrossRefGoogle Scholar
Asakawa, M.et al. 1996 Multi-order harmonic lasing with a modified wiggler. Nucl. Instrum. Methods Phys. Res. A 375, 416419.CrossRefGoogle Scholar
Bazouband, F. and Maraghechi, B. 2012 Improvement of nonlinear harmonics in free electron laser with planar wiggler. Phys. Plasmas 19, 113 106.CrossRefGoogle Scholar
Bazouband, F. and Maraghechi, B. 2013 Efficiency enhancement of nonlinear odd harmonics in thermal free electron laser. J. Appl. Phys. 113, 17 31017 318.CrossRefGoogle Scholar
Colson, W. B. 1981 Free-electron lasers operating in higher harmonics. Phys. Rev. A 24, 639641.CrossRefGoogle Scholar
Dattoli, G., Giannessi, L., Ottaviani, P. L., Freund, H. P., Biedron, S. G. and Milton, S. V. 2002 Two harmonic undulators and harmonic generation in high gain free electron lasers. Nucl. Instrum. Methods Phys. Res. A 495, 4857.CrossRefGoogle Scholar
Dattoli, G. and Voykov, G. 1993 Spectral properties of two-harmonic undulator radiation. Phys. Rev. E 48, 30303039.CrossRefGoogle ScholarPubMed
Doria, A., Gallerano, G. P., Giovenale, E., Messina, G., Petralia, A. and Spassovsky, I. 2009 The ENEA activity on compact far infrared FELs. In: Vacuum Electronics Conf. IVEC'09. IEEE Int.CrossRefGoogle Scholar
Freund, H. P. and Antonsen, J. M. 1996 Principle of Free Electron Laser, London: Chapman and Hall.Google Scholar
Freund, H. P., Biedron, S. G. and Milton, S. V. 2000 Nonlinear harmonic generation in free-electron lasers. IEEE J. Quantum Electron. 36, 275281.CrossRefGoogle Scholar
Freund, H. P. and Gold, S. H. 1984 Efficiency Enhancement in free-electron lasers using a tapered axial guide field. Phys. Rev. Lett. 52, 926929.CrossRefGoogle Scholar
Freund, H. P. and Pasour, J. 2003 Efficiency enhancement in free-electron lasers by means of concurrent rf acceleration. Phys. Rev. Lett. 91, 094801.CrossRefGoogle ScholarPubMed
Giannessi, L.et al. 2012 High-order-harmonic generation and superradiance in a seeded free-electron laser. Phys. Rev. Lett. 108, 164 801.CrossRefGoogle Scholar
Gupta, V. and Mishra, G. 2006 Harmonic undulator free electron laser and betatron oscillations. Nucl. Instrum. Methods Phys. Res. A 556, 350356.CrossRefGoogle Scholar
Gupta, V. and Mishra, G. 2007 Variable polarized harmonic-undulator free-electron laser. Nucl. Instrum. Methods Phys. Res. A 574, 150157.CrossRefGoogle Scholar
Hussain, J., Gupta, V. and Mishra, G. 2009 Effect of two-peak beam energy spread on harmonic undulator radiation and free-electron laser gain. Nucl. Instrum. Methods Phys. Res. A 608, 344350.CrossRefGoogle Scholar
Iracane, D., Touati, D. and Chaix, P. 1994 Effect of the wiggler harmonics on the free electron laser dynamics. Nucl. Instrum. Methods Phys. Res. A 341, 220224.CrossRefGoogle Scholar
Jafari Bahman, F. and Maraghechi, B. 2012 Efficiency enhancement in free-electron laser amplifier with one dimensional helical wiggler and ion-channel guiding. Phys. Plasmas 19, 013 107013 114.CrossRefGoogle Scholar
Kong, M. G. 1997 A low voltage waveguide free electron laser based on a longitudinal interaction mechanism. Opt. Commun. 141, 4852.CrossRefGoogle Scholar
Mark, J. S. and Elliott, C. J. 1987 The effects of harmonic wiggler field components on free-electron laser operation. IEEE J. Quantum Electron. 23, 15521557.Google Scholar
Marshall, T. C., Shao, Y. and Parsa, Z. 1999 Intensification of harmonic spontaneous radiation with a novel wiggler. In: Accelerator Concepts: Eighth Workshop, Maryland: American Institute of Physics.Google Scholar
McNeil, B. W. J., Robb, G. R. M., Poole, M. W. and Thompson, N. R. 2006 Harmonic lasing in a free-electron-laser amplifier. Phys. Rev. Lett. 96, 084 801.CrossRefGoogle Scholar
Mishra, G., Gehlot, M. and Hussain, J. K. 2009 Spectral properties of bi-harmonic undulator radiation. Nucl. Instrum. Methods Phys. Res. A 603, 495503.CrossRefGoogle Scholar
Nakao, N.et al. 1998 FEL experiment of the 5th harmonic generation with a modified wiggler. Nucl. Instrum. Methods Phys. Res. A 407, 374379.CrossRefGoogle Scholar
Rouhani, M. H. and Maraghechi, B. 2009 Efficiency enhancement in a single-pass Raman free electron laser. Phys. Plasmas 16, 093 110093 119.CrossRefGoogle Scholar
Rouhani, M. H. and Maraghechi, B. 2010 Simulation of a prebunched free-electron laser with planar wiggler and ion channel guiding. Phys. Plasmas 17, 023 104.CrossRefGoogle Scholar
Sircilli, F., Paes, A. C. J., Serrao, V. A. and De Polli, Y. C. 2001 Design of a hybrid undulator for free-electron lasers. IEEE Trans. Magn. 37, 38103813.CrossRefGoogle Scholar
Sung, C., Tochitsky, S. Y., Reiche, S., Rosenzweig, J. B., Pellegrini, C. and Joshi, C. 2006 Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range. Phys. Rev. ST Accel. Beams 9, 120 703.CrossRefGoogle Scholar
Wang, X. J., Watanabe, T., Shen, Y., Li, R. K., Murphy, J. B., Tsang, T. and Freund, H. P. 2007 Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier. Appl. Phys. Lett. 91, 181 115–181 113.CrossRefGoogle Scholar
Yu, L. H.et al. 2003 First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser. Phys. Rev. Lett. 91, 074801.CrossRefGoogle ScholarPubMed
Zahedian, M., Maraghechi, B. and Rouhani, M. H. 2012 Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler. Chinese Phys. B 21, 034 101.CrossRefGoogle Scholar