Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:07:28.342Z Has data issue: false hasContentIssue false

Nonlinear theory of a whistler wave

Published online by Cambridge University Press:  13 March 2009

Takashi Yamamoto
Affiliation:
Geophysics Research Laboratory, University of Tokyo, Tokyo 113

Abstract

Using the Dupree—Weinstock perturbed-orbit model of plasma turbulence, we obtain the diffusion equation describing the evolution of the average one-particle distribution function for whistler mode turbulence. The numerical result for electron pitch-angle diffusion within this scheme leads us to conclude that the effect of the resonance broadening due to perturbed orbits on the pitch-angle diffusion coefficient is not large compared with that evaluated by the unperturbed orbit in the whistler mode spectrum with a finite width. Based on the explicitly evaluated resonance function, the effects of this broadening on the growth rate for the whistler wave are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benford, G. & Thomson, J. J. 1972 Phys. Fluids, 15, 1496.CrossRefGoogle Scholar
Birmingham, T. J. & Bornatici, M. 1972 a Phys. Fluids, 15, 1778.CrossRefGoogle Scholar
Birmingham, T. J. & Bornatici, M. 1972 b Phys. Fluids, 15, 1785.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dum, C. T. & Dupree, T. H. 1970 Phys. Fluids, 13, 2064.CrossRefGoogle Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Fisz, M. 1963 Probability Theory and Mathematical Statistics. Wiley.Google Scholar
Kennel, C. F. & Petsohek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Russell, C. T., Holzer, R. E. & Smith, E. J. 1969 J. Geophys. Res. 74, 755.CrossRefGoogle Scholar
Sleeper, A. M., Weinstock, J. & Bezzerides, B. 1973 Phys. Fluids, 16, 1508.CrossRefGoogle Scholar
Thorne, R. M., Smith, E. J., Burton, R. K. & Holzer, R. E. 1973 J. Geophys. Res. 78, 1581.CrossRefGoogle Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar