Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:23:23.318Z Has data issue: false hasContentIssue false

Nonlinear surface waves on a thin plasma layer

Published online by Cambridge University Press:  13 March 2009

I. Zhelyazkov
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria
T. Vodenicharova
Affiliation:
Department of Physics, Institute for Foreign Students, 1111 Sofia, Bulgaria
M. Y. Yu
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, 4630 Bochum 1, F.R. Germany

Abstract

The propagation of nonlinear high-frequency TM antisymmetric surface waves on a thin un magnetized plasma slab bounded by vacuum has been studied. It is found that smooth surface wave solitons due to the modulation of finite-amplitude electron surface waves by slow ion-acoustic motion exist. When the high-frequency wave propagation is modified by a purely electronic slow motion, the governing equation is a derivative nonlinear Schröd inger equation with a cusped-soliton solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atanassov, V., Mateev, E. & Zhelyazkov, I. 1981 Phys Lett. 86A, 414.Google Scholar
Atanassov, V., Mateev, E. & Zhelyazkov, I. 1983 Proceedings of the Conference on Surface Waves in Plasmas, Blagoevgrad, 1981, p. 313. Sofia University, Sofia.Google Scholar
Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. & Morris, H. C. 1982 Solitone and Nonlinear Wave Equations. Academic.Google Scholar
Gradov, O. M. & Stenflo, L. 1982 Phys. Fluids, 25, 983.Google Scholar
Gradov, O. M. & Stenflo, L. 1983 Phys. Rep. 94, 111.CrossRefGoogle Scholar
Kondratenko, A. N. 1976 Plazmennye Volnovody (Plasma Waveguides). Atomizdat, Moscow.Google Scholar
Lamb, G. L. & McLaughlin, D. W. 1980 Solitons (ed. Bullough, R. K. and Caudrey, P. J.), ch. 2. Springer.Google Scholar
Manheimer, W., Colombant, D. & Ott, E. 1984 Phys. Fluids, 27, 2164.Google Scholar
Moisan, M., Ferreira, C. M., Hajlaoui, Y., Henry, D., Hubert, J., Pantel, R., Ricard, A. & Zakrzewski, Z. 1982 a Revue Phys. Appl. 17, 707.CrossRefGoogle Scholar
Moisan, M., Shivarova, A. & Trivelpiece, A. W. 1982 b Plasma Phys. 24, 1331.CrossRefGoogle Scholar
Nickerson, S. B. & Johnston, T. W. 1979 Phys. Lett. 73A, 20.Google Scholar
Oliner, A. A. & Tamir, T. 1962 J. Appl. Phys. 33, 231.CrossRefGoogle Scholar
Porkolab, M. & Goldman, M. V. 1976 Phys. Fluids, 19, 872.CrossRefGoogle Scholar
Stenflo, L., Yu, M. Y. & Zhelyazkov, I. 1983 Beitr. Plasmaphys. 23, 621.CrossRefGoogle Scholar
Yu, M. Y. & Zhelyazkov, I. 1978 J. Plasma Phys. 20, 183.CrossRefGoogle Scholar
Zhelyazkov, I., Stoyanov, O. & Yu, M. Y. 1984 Plasma Phys. Contr. Fusion, 26, 813.Google Scholar