Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T14:45:57.103Z Has data issue: false hasContentIssue false

Nonlinear propagation of positron-acoustic waves in a four component space plasma

Published online by Cambridge University Press:  20 August 2015

M. G. Shah*
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
M. R. Hossen
Affiliation:
Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka-1207, Bangladesh
A. A. Mamun
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
*
Email address for correspondence: [email protected]

Abstract

The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg–de Vries (K–dV), modified K–dV (mK–dV) and further mK–dV (fmK–dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhter, T., Hossain, M. M. & Mamun, A. A. 2013a Time-dependent cylindrical and spherical solitary structures and double layers of dust ion-acoustic waves in ultra-relativistic dense plasma. Commun. Theor. Phys. 59, 745750.CrossRefGoogle Scholar
Akhter, T., Hossain, M. M. & Mamun, A. A. 2013b Gardner solitons and double layers in a multi-ion plasma with degenerate electrons. IEEE Trans. Plasma Sci. 41, 16071613.Google Scholar
Ali, S., Moslem, W. M., Shukla, P. K. & Schlickeiser, R. 2007 Linear and nonlinear ion-acoustic waves in an unmagnetized electron–positron–ion quantum plasma. Phys. Plasmas 14, 082307.CrossRefGoogle Scholar
Brodin, G. & Marklund, M. 2007 Spin magnetohydrodynamics. New J. Phys. 9, 227.Google Scholar
Chandrasekhar, S. 1931a The density of white dwarf stars. Phil. Mag. 11, 592596.Google Scholar
Chandrasekhar, S. 1931b The maximum mass of ideal white dwarfs. J. Astrophys. 74, 8182.Google Scholar
Chandrasekhar, S. 1935 The highly collapsed configurations of a stellar mass. Mon. Not. R. Astron. Soc. 95, 207225.CrossRefGoogle Scholar
Chatterjee, P., Ghosh, D. K. & Sahu, B. 2012 Planar and nonplanar ion acoustic shock waves with nonthermal electrons and positrons. Astrophys. Space Sci. 339, 261267.CrossRefGoogle Scholar
Chawla, J. K., Mishra, M. K. & Tiwari, R. S. 2013 Modulational instability of ion-acoustic waves in electron–positron–ion plasmas. Astrophys. Space Sci. 347, 283292.CrossRefGoogle Scholar
Crouseilles, N., Hervieux, P. A. & Manfredi, G. 2008 Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.Google Scholar
Dyakonov, M. I. & Shur, M. S. 1996 Plasma wave electronics: novel terahertz devices using two dimensional electron fluid, special issue on future directions in device science and technologies. IEEE Trans. Electron Devices 43, 16401645.Google Scholar
El-Shamy, E. F., El-Taibany, W. F., El-Shewy, E. K. & El-Shorbagy, K. H. 2012 Positron acoustic solitary waves interaction in a four-component space plasma. Astrophys. Space Sci. 338, 279285.Google Scholar
El-Shewy, E. K., Abo el Maaty, M. I., Abdelwahed, H. G. & Elmessary, M. A. 2011 Dust acoustic solitary waves in saturn F-ring’s region. Commun. Theor. Phys. 55, 143150.CrossRefGoogle Scholar
Elwakil, S. A., Abulwafa, E. M., El-Shewy, E. K. & Abd-El-Hamid, H. M. 2011 Solitary, explosive and periodic solutions for electron acoustic solitary waves with non-thermal hot ions. Adv. Space Res. 48, 15781590.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. & Malka, V. 2004 A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Gallant, Y. A., Hoshino, M., Langdon, A. B., Arons, J. & Max, C. E. 1994 Relativistic, perpendicular shocks in electron–positron plasmas. Astrophys. J. 391, 73.Google Scholar
Garcia-Berro, E., Torres, S., Althaus, L. G., Renedo, I., Loren-Aguiltar, P., Crsico, A. H., Rohrmann, R. D., Salaris, M. & Isern, J. 2010 A white dwarf cooling age of 8Gyr for NGC 6791 from physical separation processes. Nature 465, 194196.Google Scholar
Ghosh, B., Chandra, S. & Paul, S. N. 2012 Relativistic effects on the modulational instability of electron plasma waves in quantum plasma. Pramana 78, 779790.Google Scholar
Hossen, M. R. & Mamun, A. A. 2014a Electrostatic solitary structures in a relativistic degenerate multispecies plasma. Braz. J. Phys. 44, 673681.Google Scholar
Hossen, M. R. & Mamun, A. A. 2014b Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma. J. Korean Phys. Soc. 65, 20452052.Google Scholar
Hossen, M. R. & Mamun, A. A. 2015 Nonplanar shock excitations in a four component degenerate quantum plasma: the effects of various charge states of heavy ions. Plasma Sci. Technol. 17, 177.Google Scholar
Hossen, M. R., Ema, S. A. & Mamun, A. A. 2014a Nonplanar shock structures in a relativistic degenerate multi-species plasma. Commun. Theor. Phys. 62, 888894.CrossRefGoogle Scholar
Hossen, M. R., Nahar, L. & Mamun, A. A. 2014b Roles of arbitrarily charged heavy ions and degenerate plasma pressure in cylindrical and spherical IA shock waves. Phys. Scr. 89, 105603.Google Scholar
Hossen, M. R., Nahar, L. & Mamun, A. A. 2014c Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions. J. Korean Phys. Soc. 65, 18631872.Google Scholar
Hossen, M. R., Nahar, L., Sultana, S. & Mamun, A. A. 2014d Nonplanar ion-acoustic shock waves in degenerate plasmas with positively charged heavy ions. High Energ. Density Phys. 13, 1319.CrossRefGoogle Scholar
Hossen, M. R., Nahar, L., Sultana, S. & Mamun, A. A. 2014e Roles of positively charged heavy ions and degenerate plasma pressure on cylindrical and spherical ion acoustic solitary waves. Astrophys. Space Sci. 353, 123130.Google Scholar
Hossen, M. R., Ema, S. A. & Mamun, A. A. 2015 Planar and nonplanar shock waves in a degenerate quantum plasma. Contrib. Plasma Phys. 55, 551559.Google Scholar
Kozlovsky, B., Murphy, R. J. & Share, G. H. 2004 Positron-emitter production in solar flares from 3He reactions. J. Astrophys. 604, 892.Google Scholar
Mamun, A. A. & Shukla, P. K. 2010a Arbitrary amplitude solitary waves and double layers in an ultra-relativistic degenerate dense dusty plasma. Phys. Lett. A 374, 42384241.CrossRefGoogle Scholar
Mamun, A. A. & Shukla, P. K. 2010b Solitary waves in an ultrarelativistic degenerate dense plasma. Phys. Plasmas 17, 104504.Google Scholar
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Commun. 46, 263287.Google Scholar
Marklund, M. & Shukla, P. K. 2006 Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78, 591640.Google Scholar
Markovich, P. A., Ringhofer, C. A. & Schmeiser, C. 1990 Semiconductor Equations. Springer.Google Scholar
Masood, W., Mirza, A. M. & Hanif, M. 2008 Ion acoustic shock waves in electron–positron–ion quantum plasma. Phys. Plasmas 15, 072106.CrossRefGoogle Scholar
Maxon, S. & Viecelli, J. 1974 Spherical solitons. Phys. Rev. Lett. 32, 46.Google Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetosphere. Chicago University Press.Google Scholar
Miller, H. R. & Witta, P. J. 1987 Active Galactic Nuclei. Springer.Google Scholar
Mowafy, A. E., El-Shewy, E. K., Moslem, W. M. & Zahran, M. A. 2008 Effect of dust charge fluctuation on the propagation of dust-ion acoustic waves in inhomogeneous mesospheric dusty plasma. Phys. Plasmas 15, 073708.Google Scholar
Nejoh, Y. N. 1996 Positron-acoustic waves in an electron–positron plasma with an electron beam. Phys. Scr. 49, 967.Google Scholar
Popel, S. I., Vladimirov, S. V. & Shukla, P. K. 1995 Ionacoustic solitons in electron–positron–ion plasmas. Phys. Plasmas 2, 716.Google Scholar
Roy, N., Tasnim, S. & Mamun, A. A. 2012 Solitary waves and double layers in an ultra-relativistic degenerate dusty electron–positron–ion plasma. Phys. Plasmas 19, 033705.Google Scholar
Sahu, B. 2010 Positron acoustic shock waves in planar and nonplanar geometry. Phys. Scr. 82, 065504.Google Scholar
Serbeto, A., Mendonca, J. T., Tsui, K. H. & Bonifacio, R. 2008 Quantum wave kinetics of high-gain free-electron lasers. Phys. Plasmas 15, 013110.Google Scholar
Shah, A., Mahmood, S. & Haque, Q. 2011 Propagation of solitary waves in relativistic electron–positron–ion plasmas with kappa distributed electrons and positrons. Phys. Plasmas 18, 114501.Google Scholar
Shapiro, S. L. & Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. John Wiley & Sons.CrossRefGoogle Scholar
Shukla, P. K. 2009 Plasma physics: a new spin on quantum plasmas. Nat. Phys. 5, 9293.Google Scholar
Surko, C. M., Leventhal, M. & Passner, A. 1989 Positron Plasma in the Laboratory. Phys. Rev. Lett. 62, 901904.Google Scholar
Tribeche, M., Aoutou, K., Younsi, S. & Amour, R. 2009 Nonlinear positron acoustic solitary waves. Phys. Plasmas 16, 072103.Google Scholar
Zeba, I., Moslem, W. M. & Shukla, P. K. 2012 Ion solitary pulses in warm plasmas with ultra relativistic degenerate electrons and positrons. Astrophys. J. 750, 72.Google Scholar
Zobaer, M. S., Roy, N. & Mamun, A. A. 2013 Ion-acoustic shock waves in a degenerate dense plasma. J. Plasma Phys. 79, 6568.Google Scholar