Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T18:08:40.096Z Has data issue: false hasContentIssue false

Nonlinear Hall MHD and electrostatic ion–cyclotron stationary waves: a Hamiltonian-geometric viewpoint

Published online by Cambridge University Press:  01 October 2007

J. F. McKENZIE
Affiliation:
School of Physics, University of KwaZulu-Natal, Westville Campus, University Road, Westville, Private Bag x 54001, Durban 4000, South Africa ([email protected]) Senior Member of King's College, Cambridge CB2 IST, UK
R. L. MACE
Affiliation:
School of Physics, University of KwaZulu-Natal, Westville Campus, University Road, Westville, Private Bag x 54001, Durban 4000, South Africa ([email protected])
T. B. DOYLE
Affiliation:
School of Physics, University of KwaZulu-Natal, Westville Campus, University Road, Westville, Private Bag x 54001, Durban 4000, South Africa ([email protected])

Abstract

Some supplementary results and interpretations on the theory of Hall MHD solitons (McKenzie and Doyle 2002 Phys. Plasmas9, 55) are presented. It is shown that the Hall MHD soliton reduces, in the appropriate limit, to an electrostatic ion–cyclotron soliton. It is also shown how the dynamical equations governing the Hall MHD soliton can be obtained from a Hamiltonian H. Soliton solutions correspond to H = 0, periodic solutions to H < 0 and rotation-type solutions to H >0. Possible applications are discussed. A non-canonical Hamiltonian picture is developed and compared to the well-known example of a free rigid body.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R. and Marsden, J. E. 1994 Foundations of Mechanics, 2nd edn. New York: Addison-Wesley.Google Scholar
Andre, M., Hoskinen, H., Gustafason, G. and Lundin, R. 1987 Geophys. Res. Lett. 14, 463.Google Scholar
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, 2nd edn. New York: Springer.CrossRefGoogle Scholar
Bridges, T. J. 1992 Proc. R. Soc. Lond. A 439, 297.Google Scholar
Ergun, R. E. et al. 1998 Geophys. Res. Lett. 25, 2025.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1982 Course on Theoretical Physics: Mechanics, 3rd edn. New York: Butterworth-Heinemann.Google Scholar
Marsden, J. E. and Ratiu, T. S. 1999 Introduction to Mechanics and Symmetry, 2nd edn. New York: Springer.CrossRefGoogle Scholar
McKenzie, J. F. 2004 J. Plasma Phys. 70, 533.Google Scholar
McKenzie, J. F. and Doyle, T. B. 2001 Phys. Plasmas 8, 4367.CrossRefGoogle Scholar
McKenzie, J. F. and Doyle, T. B. 2002 Phys. Plasmas 9, 55.Google Scholar
McKenzie, J. F., Dubinin, E., Sauer, K. and Doyle, T. B. 2004 J. Plasma Phys. 70, 431.Google Scholar
McKenzie, J. F., Verheest, F., Doyle, T. B. and Hellberg, M. A. 2005 Phys. Plasmas 12, 1.CrossRefGoogle Scholar
Morrison, P. J. 1998 Rev. Mod. Phys. 70, 467.CrossRefGoogle Scholar
Morrison, P. J. 2005 Phys. Plasmas 12, 058102.Google Scholar
Stasiewitz, K. V. et al. 2003 Phys. Rev. Lett. 90, 085002.CrossRefGoogle Scholar
Webb, G. M., McKenzie, J. F., Dubinin, E. and Sauer, K. 2005 Nonlinear Proc. Geophys. 12, 643660.CrossRefGoogle Scholar