Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:48:39.607Z Has data issue: false hasContentIssue false

Nonlinear generation of the fundamental radiation in plasmas: the influence of induced ion-acoustic and Langmuir waves

Published online by Cambridge University Press:  13 March 2009

F. B. Rizzato
Affiliation:
Institute of Physics, Federal University of Rio Grande do Sul, P.O. Box 15051, 91500 Porto Alegre, RS, Brazil
A. C.-L. Chian
Affiliation:
National Institute for Space Research – INPE, P.O. Box 515, 12201 São José dos Campos, SP, Brazil

Abstract

A nonlinear emission mechanism of electromagnetic waves at the fundamental plasma frequency has been examined by Chian & Alves. This mechanism is based on the electromagnetic oscillating two-stream instability driven by two oppositely propagating Langmuir waves. The excitation of the electromagnetic oscillating two-stream instability is due to nonlinear wave–wave coupling involving Langmuir waves, low-frequency density waves and electromagnetic waves. In this paper the Chian & Alves model is improved using the generalized Zakharov equations. Attention is directed toward the influence of induced low-frequency and Langmuir waves on the properties of the electromagnetic oscillating two-stream instability. Presumably, the properties derived in the present context may be relevant to both space and laboratory plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akimoto, K. 1988 Phys. Fluids 31, 538.CrossRefGoogle Scholar
Cheng, P. Y., Wong, A. Y., Darrow, C. B. & Qian, S. J. 1982 Phys. Rev. Lett. 48, 1982.Google Scholar
Chian, A. C.-L. 1990 Rev. Mexicana Astron. Astrof. 21, 541.Google Scholar
Chian, A. C.-L. 1991 Planet. Space Sci. 39, 1217.CrossRefGoogle Scholar
Chian, A. C.-L. & Alves, M. V. 1988 Astrophys. J. 330, L77.CrossRefGoogle Scholar
Costley, A. E. & TFR GROUP 1977 Phys. Rev. Lett. 38, 1477.CrossRefGoogle Scholar
Gandy, R. F., Hutchinson, I. H. & Yates, D. H. 1985 Phys. Rev. Lett. 54, 800.CrossRefGoogle Scholar
Gurnett, D. A. & Frank, L. A. 1975 Solar Phys. 45, 477.CrossRefGoogle Scholar
Haegawa, A. 1970 Phys. Rev. A 1, 1746.CrossRefGoogle Scholar
Kurth, W. S., Gurnett, D. A., Scarf, F. L. & Poynter, R. L. 1984 Nature 312, 27.CrossRefGoogle Scholar
Kuznetsov, E. A. 1974 Soviet Phys. JETP 39, 1003.Google Scholar
Lashmore-Davies, C. N. 1974 Phys. Rev. Lett. 32, 289.CrossRefGoogle Scholar
Leung, P., Tran, M. Q. & Wong, A. Y. 1981 Plasma Phys. 24, 567.CrossRefGoogle Scholar
Lin, R. P., Levedahl, W. K., Lotko, W., Gurnett, D. A. & Scarf, F. L. 1986 Astrophys. J. 308, 954.CrossRefGoogle Scholar
Longinov, A. V., Perepelkin, N. F. & Suprunenko, V. A. 1976 Soviet J. Plasma Phys. 2, 344.Google Scholar
Mima, K. & Nishikawa, K. 1984 Handbook of Plasma Physics, vol. 2 (ed. Rosenbluth, M. N. and Sagdeev, R. Z.), North-Holland.Google Scholar
Rizzato, F. B. 1990 J. Plasma Phys. 44, 483.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y., Mohan, M., Varma, R. K. & Spatschek, K. H. 1983 Phys. Rev. A 27, 552.CrossRefGoogle Scholar
Smith, R. A., Goldstein, M. L. & Papadopoulos, K. 1979 Astrophys. J. 234, 348.CrossRefGoogle Scholar
Thidé, B., Kopka, H. & Stubbe, P. 1982 Phys. Rev. Lett. 49, 1561.CrossRefGoogle Scholar
Thornhill, S. G. & Ter Haar, D. 1978 Phys. Rep. 43, 43.CrossRefGoogle Scholar